客服系统
Asana to Redshift: 2 Easy Methods
Asana is a Work Management Platform available as a Cloud Service that helps users to organize, track and manage their tasks. Asana helps to plan and structure work in a way that suits organizations. All activities involved in a typical organization, right from Project Planning to Task Assignment, Risk Forecasting, Assessing Roadblocks, and changing plans can be handled on the same platform. All this comes at a very flexible pricing plan based on the number of users per month.There is also a free version available for teams up to a size of 15. Almost 70000 organizations worldwide use asana for managing their work. Since the platform is closely coupled with the day-to-day activities of the organizations, it is only natural that the organizations will want to have the data imported into their Data Warehouse for analysis and building insights. This is where Amazon Redshift comes into play.
In this blog post, you will learn to load data from Asana to Redshift Data Warehouse which is one of the most widely used completely managed Data Warehouse services.
Introduction to Asana
Asana is a Project Management Software that provides a comprehensive set of APIs to build applications using their platform. Not only does it allow to access data, but it also has APIs to insert, update and delete data related to any item in the platform. It is important to understand the object hierarchy followed by Asana before going into detail on how to access the APIs.
Solve your data replication problems with LIKE.TG ’s reliable, no-code, automated pipelines with 150+ connectors.Get your free trial right away!
Asana Object Hierarchy
Objects in Asana are organized as the below basic units.
Tasks: Tasks represent the most basic unit of action in Asana.Projects: Tasks are organized into projects. A project represents a collection of tasks that can be viewed as a Board, List, or Timeline.Portfolio: A portfolio is a collection of projects.Sections: Tasks can also be grouped as sections. Sections usually represent something lower in the hierarchy than projects.Subtasks: Tasks can be represented as a collection of subtasks. Subtasks are similar to the task, except that they have a parent task.
Users in Asana are organized as workspaces, organizations, and teams. Workspaces are the highest-level units. Organizations are special workspaces that represent an actual company. Teams are a group of users who collaborate on projects.
Asana API Access
Asana allows API access through two mechanisms
OAuth: This method requires an application to be registered in the Asana admin panel and user approval to allow data access through his account. This is meant to be used while implementing applications using the Asana platform.Personal Access Token: A personal access token can be created from the control panel and used to successfully execute API calls using an authorization header key. This is meant to be used while implementing simple scripts. We will be using this method to access Asana data.
Asana API Rate Limits
Asana API enforces rate limits to maintain the stability of its systems. Free users can make up to 150 requests per minute and premium users can make up to 1500 requests per minute. There is also a limit to the concurrent number of requests. Users can make up to 50 read requests and 15 write requests concurrently.
There is also a limit based on the cost of a request. Some of the API requests may be costly at the back end since Asana will have to traverse a large nested graph to provide the output. Asana does not explicitly mention the exact cost quota but emphasizes that if you make too many costly requests, you could get an error as a response.
For more information on Asana, click here.
Introduction to Amazon Redshift
Amazon Redshift is a completely managed database offered as a cloud service by Amazon Web Services (AWS). It offers a flexible pricing plan with the users only having to pay for the resources they use. A detailed article on Amazon Redshift’s pricing plan can be found here. AWS takes care of all the activities related to maintaining a highly reliable and stable Data Warehouse. The customers can thus focus on their business logic without worrying about the complexities of managing a large infrastructure.
Amazon Redshift is designed to run complex queries over large amounts of data and provide quick results. It accomplishes this through the use of Massively Parallel Processing (MPP) architecture. Amazon Redshift works based on a cluster of nodes. One of the nodes is designated as a Leader Node and others are known as Compute Nodes. Leader Node handles client communication, query optimization, and task assignment.
Redshift can be scaled seamlessly by adding more nodes or upgrading existing nodes. Redshift can handle up to a PB of data. Redshift’s concurrency scaling feature can automatically scale the cluster up and down during high load times while staying within the customer’s budget constraints. Users can enjoy a free hour of concurrency scaling for every 24 hours of a Redshift cluster staying operational.
For more information on Amazon Redshift, click here.
Methods to Replicate Data from Asana to Redshift
Method 1: Build a Custom Code to Replicate Data from Asana to Redshift
You will invest engineering bandwidth to hand-code scripts to get data from Asana’s API to S3 and then to Redshift. Additionally, you will also need to monitor and maintain this setup on an ongoing basis so that there is a consistent flow of data.
Method 2: Replicate Data from Asana to Redshift using LIKE.TG Data
Bringing data from Asana works pretty much out of the box while using a solution likethe LIKE.TG Data Integration Platform.With minimal tech involvement, the data can be reliably streamed from Asana to Redshift in real-time.
Sign up here for a 14-day Free Trial!
Methods to Replicate Data from Asana to Redshift
Broadly, there are 2 methods to replicate your data from Asana to Redshift. Those methods are listed here:
Method 1: Build a Custom Code to Replicate Data from Asana to RedshiftMethod 2: Replicate Data from Asana to Redshift using LIKE.TG Data
Now, let’s go through these methods one by one.
Method 1: Build a Custom Code to Replicate Data from Asana to Redshift
The objective here is to import a list of projects from Asana to Redshift. You will be using the project API in Asana to accomplish this. To access the API, you will first need a personal access token. Let us start by learning how to generate the personal access token. Follow the steps below to build a custom code to replicate data from Asana to Redshift:
Step 1: Access the Personal Access TokenStep 2: Access the API using Personal Access TokenStep 3: Convert JSON to CSVStep 4: Copy the CSV File to AWS S3 BucketStep 5: Copy Data to Amazon Redshift
Step 1: Access the Personal Access Token
Follow the steps below to access the Personal Access Token:
Go to the “Developer App Management” page in Asana and click on the “My Profile” settings.Go to “Apps” and then to “Manage Developer Apps” and then click on “Create New Personal Access Token”.Add a description and click on “Create”.Copy the token that is displayed.Note: This token will only be shown once and if you do not copy it, you will need to create another one.
Step 2: Access the API using Personal Access Token
With the Personal Access Token that you copied in your last step, access the API as follows.
curl -X GET https://app.asana.com/api/1.0/projects -H 'Accept: application/json' -H 'Authorization: Bearer {access-token}'
The response will be a JSON in the following format.
{ "data": [ { "gid": "12345", "resource_type": "project", "name": "Stuff to buy", "created_at": "2012-02-22T02:06:58.147Z", "archived": false, "color": "light-green", … }, {....}
The response will contain a key named data. The value for the “data”. Key will be a list of project details formatted as a nested JSON. Save the file as “projects.json”.
Step 3: Convert JSON to CSV
Use the command-line JSON processor utility jq to convert the JSON to CSV for loading to MySQL. For simplicity, you will only convert the name, created_at, and due_date attributes of project details.
jq -r '.data[] | [.name, .start_on, .due_on] | @csv' projects.json > projects.csv
Note: name, start_on, and due_on are fields contained in the response JSON. If you need different fields, you will have to modify the above code as per your requirement.
Step 4: Copy the CSV File to AWS S3 Bucket
Copy the CSV file to an AWS S3 Bucket location using the following code.
aws s3 cp projects.csv s3://my_bucket/projects/
Step 5: Copy Data to Amazon Redshift
Login to “AWS Management Console” and type the following command in the Query Editor in the Redshift console and execute.
copy target_table_name from ‘s3://my_bucket/projects/ credentials access_key_id <access_key_id> secret_access_key <secret_access_key>
Note: access_key_id and secret_access_key represent the IAM credentials.
That concludes the effort. You have successfully copied data from Asana to Redshift. However, you still have only imported 1 table into your Amazon Redshift. For that table, you have only ingested 3 columns. Asana has a large number of objects in its database with each object having numerous columns. To accommodate all these in our current approach, you will need to implement a complex script using a programming language.
Drawbacks of Building a Custom Code to Replicate Data from Asana to Redshift
Listed below are the drawbacks of building a custom code to replicate data from Asana to Redshift:
Asana provides some of the critical information related to objects like authors, workspaces, etc are available inside nested JSON structures in the original JSON. These can only be extracted by implementing a lot of custom logic.In most cases, the import function will need to be executed periodically to maintain a recent copy. Such jobs will need mechanisms to handle duplicates and scheduled operations.The above method uses a complete overwrite of the Redshift table. This may not be always practical. In case incremental load is required, the Redshift INSERT INTO command will be required. But this command does not manage duplicates on its own. So a temporary table and related logic to handle duplicates will be required.The current approach does not have any mechanism to handle the rate limits by Asana.Any further improvement to the current approach will need the developers to have a lot of domain knowledge in Asana and their object hierarchy structure.
A wise choice would be using a simple ETL tool like LIKE.TG and do not worry about all these complexities in implementing a custom ETL from Asana to Redshift
Towards the end, the blog discusses the drawbacks of this approach and highlights simpler alternatives to achieve the same objective.
Method 2: Replicate Data from Asana to Redshift using LIKE.TG Data
LIKE.TG Data, a No-code Data Pipeline helps to Load Data from any data source such as Databases, SaaS applications, Cloud Storage, SDKs, and Streaming Services and simplifies the ETL process. It supports 100+ data sources including Asana, etc., and is a 3-step process by just selecting the data source, providing valid credentials, and choosing the destination. LIKE.TG loads the data onto the desired Data Warehouse, enriches the data, and transforms it into an analysis-ready form without writing a single line of code.
Its completely automated pipeline offers data to be delivered in real-time without any loss from source to destination. Its fault-tolerant and scalable architecture ensure that the data is handled in a secure, consistent manner with zero data loss and supports different forms of data. The solutions provided are consistent and work with different Business Intelligence (BI) tools as well.
Get Started with LIKE.TG for free
Check out why LIKE.TG is the Best:
Secure: LIKE.TG has a fault-tolerant architecture that ensures that the data is handled in a secure, consistent manner with zero data loss.Schema Management: LIKE.TG takes away the tedious task of schema management automatically detects the schema of incoming data and maps it to the destination schema.Minimal Learning: LIKE.TG , with its simple and interactive UI, is extremely simple for new customers to work on and perform operations.LIKE.TG Is Built To Scale: As the number of sources and the volume of your data grows, LIKE.TG scales horizontally, handling millions of records per minute with very little latency.Incremental Data Load: LIKE.TG allows the transfer of data that has been modified in real-time. This ensures efficient utilization of bandwidth on both ends.Live Support: The LIKE.TG team is available round the clock to extend exceptional support to its customers through chat, email, and support calls.Live Monitoring: LIKE.TG allows you to monitor the data flow and check where your data is at a particular point in time.
Sign up here for a 14-day Free Trial!
Conclusion
The article introduced you to Asana and Amazon Redshift. It also provided 2 methods that you can use to replicate data from Asana to Redshift. The 1st method involves Manual Integration while the 2nd method involves Automated Continous Integration.
With the complexity involves in Manual Integration, businesses are leaning more towards Automated Integration. This is not only hassle-free but also easy to operate and does not require any technical proficiency. In such a case, LIKE.TG Data is the right choice for you! It will help simplify the Web Analysis process by setting up Asana to Redshift Integration.
Visit our Website to Explore LIKE.TG
Want to take LIKE.TG for a spin? Sign Up for a 14-day free trial and experience the feature-rich LIKE.TG suite first hand.
Share your experience of Setting Up Asana to Redshift Integration in the comments section below!
AWS Aurora to Redshift: 9 Easy Steps
AWS Data Migration Service (DMS) is a Database Migration service provided by Amazon. Using DMS, you can migrate your data from one Database to another Database. It supports both, Homogeneous and Heterogeneous Database Migration. DMS also supports migrating data from the on-prem Database to AWS Database services. As a fully managed service, Amazon Aurora saves you time by automating time-consuming operations like provisioning, patching, backup, recovery, and failure detection and repair.
Amazon Redshift is a cloud-based, fully managed petabyte-scale data warehousing service. Starting with a few hundred gigabytes of data, you may scale up to a petabyte or more. This allows you to gain fresh insights for your company and customers by analyzing your data.
In this article, you will be introduced to AWS DMS. You will understand the steps to load data from Amazon Aurora to Redshift using AWS DMS. You also explore the pros and cons associated with this method. So, read along to gain insights and understand the loading of data from Aurora to Redshift using AWS DMS.
What is Amazon Aurora?
Amazon Aurora is a popular database engine with a rich feature set that can import MySQL and PostgreSQL databases with ease. It delivers enterprise-class performance while automating all common database activities. As a result, you won’t have to worry about managing operations like data backups, hardware provisioning, and software updates manually.
Amazon Aurora offers great scalability and data replication across various zones thanks to its multi-deployment tool. As a result, consumers can select from a variety of hardware specifications to meet their needs. The server-less functionality of Amazon Aurora also controls database scalability and automatically upscales or downscales storage as needed. You will only be charged for the time the database is active in this mode.
Solve your data replication problems with LIKE.TG ’s reliable, no-code, automated pipelines with 150+ connectors.Get your free trial right away!
Key Features of Amazon Aurora
Amazon Aurora’s success is aided by the following features:
Exceptional Performance: The Aurora database engine takes advantage of Amazon’s CPU, memory, and network capabilities thanks to software and hardware improvements. As a result, Aurora considerably exceeds its competition.
Scalability: Based on your database usage, Amazon Aurora will automatically scale from a minimum of 10 GB storage to 64 TB storage in increments of 10 GB at a time. This will have no effect on the database’s performance, and you won’t have to worry about allocating storage space as your business expands.
Backups: Amazon Aurora offers automated, incremental, and continuous backups that don’t slow down your database. This eliminates the need to take data snapshots on a regular basis in order to keep your data safe.
High Availability and Durability: Amazon RDS continuously monitors the health of your Amazon Aurora database and underlying Amazon Elastic Compute Cloud (Amazon EC2) instance. In the event of a database failure, Amazon RDS will automatically resume the database and associated activities. With Amazon Aurora, you don’t need to replay database redo logs for crash recovery, which cuts restart times in half. Amazon Aurora also isolates the database buffer cache from the database process, allowing it to survive a database restart.
High Security: Aurora is integrated with AWS Identity and Access Management (IAM), allowing you to govern what your AWS IAM users and groups may do with specific Aurora resources (e.g., DB Instances, DB Snapshots, DB Parameter Groups, DB Event Subscriptions, DB Options Groups). You can also use tags to restrict what activities your IAM users and groups can take on groups of Aurora resources with the same tag (and tag value).
Fully Managed: Amazon Aurora will keep your database up to date with the latest fixes. You can choose whether and when your instance is patched with DB Engine Version Management. You can manually stop and start an Amazon Aurora database with a few clicks. This makes it simple and cost-effective to use Aurora for development and testing where the database does not need to be up all of the time. When you suspend your database, your data is not lost.
Developer Productivity: Aurora provides machine learning capabilities directly from the database, allowing you to add ML-based predictions to your applications using the regular SQL programming language. Thanks to a simple, efficient, and secure connectivity between Aurora and AWS machine learning services, you can access a wide range of machine learning algorithms without having to build new integrations or move data around.
What is Amazon Redshift?
Amazon Redshift is a petabyte-scale data warehousing service that is cloud-based and completely managed. It allows you to start with a few gigabytes of data and work your way up to a petabyte or more. Data is organised into clusters that can be examined at the same time via Redshift. As a result, Redshift data may be rapidly and readily retrieved. Each node can be accessed individually by users and apps.
Many existing SQL-based clients, as well as a wide range of data sources and data analytics tools, can be used with Redshift. It features a stable architecture that makes it simple to interface with a wide range of business intelligence tools.
Each Redshift data warehouse is fully managed, which means administrative tasks like backup creation, security, and configuration are all automated.
Because Redshift was designed to handle large amounts of data, its modular design allows it to scale easily. Its multi-layered structure enables handling several inquiries at once simple.
Slices can be created from Redshift clusters, allowing for more granular examination of data sets.
Key Features of Amazon Redshift
Here are some of Amazon Redshift’s important features:
Column-oriented Databases: In a database, data can be organised into rows or columns. Row-orientation databases make up a large percentage of OLTP databases. In other words, these systems are built to perform a huge number of minor tasks such as DELETE, UPDATE, and so on. When it comes to accessing large amounts of data quickly, a column-oriented database like Redshift is the way to go. Redshift focuses on OLAP operations. The SELECT operations have been improved.
Secure End-to-end Data Encryption: All businesses and organisations must comply with data privacy and security regulations, and encryption is one of the most important aspects of data protection. Amazon Redshift uses SSL encryption for data in transit and hardware-accelerated AES-256 encryption for data at rest. All data saved to disc is encrypted, as are any backup files. You won’t need to worry about key management because Amazon will take care of it for you.
Massively MPP (Multiple Processor Parallelization): Redshift, like Netezza, is an MPP appliance. MPP is a distributed design approach for processing large data sets that employs a “divide and conquer” strategy among multiple processors. A large processing work is broken down into smaller tasks and distributed among multiple compute nodes. To complete their calculations, the compute node processors work in parallel rather than sequentially.
Cost-effective: Amazon Redshift is the most cost-effective cloud data warehousing alternative. The cost is projected to be a tenth of the cost of traditional on-premise warehousing. Consumers simply pay for the services they use; there are no hidden costs. You may discover more about pricing on the Redshift official website.
Scalable: Amazon Redshift, a petabyte-scale data warehousing technology from Amazon, is scalable. Redshift from Amazon is simple to use and scales to match your needs. With a few clicks or a simple API call, you can instantly change the number or kind of nodes in your data warehouse, and scale up or down as needed.
What is AWS Data Migration Service (DMS)?
Using AWS Data Migration Service (DMS) you can migrate your tables from Aurora to Redshift. You need to provide the source and target Database endpoint details along with Schema Names. DMS uses a Replication Instance to process the Migration task. In DMS, you need to set up a Replication Instance and provide the source and target endpoint details. Replication Instance reads the data from the source and loads the data into the target. This entire processing happens in the memory of the Replication Instance. For migrating a high volume of data, it is recommended to use Replication Instances of higher instance classes.
To explore more about AWS DMS, visit here.
Seamlessly Move Data from Aurora to Redshift Using LIKE.TG ’s No Code Data Pipeline
Method 1: Move Data from Aurora to Redshift Using AWS DMS
This method requires you to manually write a custom script that makes use of AWS DMS to transfer data from Aurora to Redshift.
Method 2: Move Data from Aurora to Redshift Using LIKE.TG Data
LIKE.TG Data, an Automated No Code Data Pipelineprovides you a hassle-free solution for connectingAurora PostgreSQL to Amazon Redshiftwithin minutes with an easy-to-use no-code interface. LIKE.TG is fully managed and completely automates the process of not only loading data from Aurora PostgreSQL but also enriching the data and transforming it into an analysis-ready form without having to write a single line of code.
LIKE.TG ’s fault-tolerant Data Pipeline offers a faster way to move data from databases or SaaS applications into your Redshift account. LIKE.TG ’s pre-built integration with Aurora PostgreSQL along with100+ other data sources(and 40+ free data sources)will take full charge of the data transfer process, allowing you to focus on key business activities
GET STARTED WITH LIKE.TG FOR FREE
Why Move Data from Amazon Aurora to Redshift?
Aurora is a row-based database, therefore it’s ideal for transactional queries and web apps. Do you need to check for a user’s name using their id? Aurora makes it simple. Do you want to count or average all of a user’s widgets? Redshift excels in this area. As a result, if you want to utilize any of the major Business Intelligence tools on the market today to analyze your data, you’ll need to employ a data warehouse like Redshift. You can use LIKE.TG for this to make the process easier.
Methods to Move Data from Aurora to Redshift
You can easily move your data from Aurora to Redshift using the following 2 methods:
Method 1: Move Data from Aurora to Redshift Using LIKE.TG Data
Method 2: Move Data from Aurora to Redshift Using AWS DMS
Method 1: Move Data from Aurora to Redshift Using LIKE.TG Data
LIKE.TG Data, an Automated Data Pipeline helps you directly transfer data fromAurora to Redshiftin a completely hassle-free automated manner.LIKE.TG is fully managed and completely automates the process of not only loading data from your desired source but also enriching the data and transforming it into an analysis-ready form without having to write a single line of code. You can seamlessly ingest data from your Amazon Aurora PostgreSQL database using LIKE.TG Pipelines and replicate it to a Destination of your choice.
While you unwind, LIKE.TG will take care of retrieving the data and transferring it to your destination Warehouse. Unlike AWS DMS, LIKE.TG provides you with an error-free, fully managed setup to move data in minutes. You can check a detailed article to compare LIKE.TG vs AWS DMS.
Refer to these documentations for detailed steps for integration of Amazon Aurora to Redshift.
The following steps can be implemented to connect Aurora PostgreSQL to Redshift using LIKE.TG :
Step 1) Authenticate Source: Connect Aurora PostgreSQL as the source to LIKE.TG ’s Pipeline.
Step 2) Configure Destination: Configure your Redshift account as the destination for LIKE.TG ’s Pipeline.
Check out what makes LIKE.TG amazing:
Secure: LIKE.TG has a fault-tolerant architecture that ensures that the data is handled in a secure, consistent manner with zero data loss.
Auto Schema Mapping: LIKE.TG takes away the tedious task of schema management automatically detects the schema of incoming data fromAurora PostgreSQLfilesand maps it to the destination schema.
Quick Setup: LIKE.TG with its automated features, can be set up in minimal time. Moreover, with its simple and interactive UI, it is extremely easy for new customers to work on and perform operations.
Transformations: LIKE.TG provides preload transformations through Python code. It also allows you to run transformation code for each event in the Data Pipelines you set up. You need to edit the event object’s properties received in the transform method as a parameter to carry out the transformation. LIKE.TG also offers drag and drop transformations like Date and Control Functions, JSON, and Event Manipulation to name a few. These can be configured and tested before putting them to use for aggregation.
LIKE.TG Is Built To Scale: As the number of sources and the volume of your data grows, LIKE.TG scales horizontally, handling millions of records per minute with very little latency.
Incremental Data Load: LIKE.TG allows the transfer of data that has been modified in real-time. This ensures efficient utilization of bandwidth on both ends.
Live Support: The LIKE.TG team is available round the clock to extend exceptional support to its customers through chat, email, and support calls.
With continuous Real-Time data movement, LIKE.TG allows you to combine Aurora PostgreSQL data along with your other data sources and seamlessly load it to Redshift with a no-code, easy-to-setup interface. Try our 14-day full-feature access free trial!
Get Started with LIKE.TG for Free
Method 2: Move Data from Aurora to Redshift Using AWS DMS
Using AWS DMS, perform the following steps to transfer your data from Aurora to Redshift:
Step 1: Let us create a table in Aurora (Table name redshift.employee). We will move the data from this table to Redshift using DMS.
Step 2: We will insert some rows in the Aurora table before we move the data from this table to Redshift.
Step 3: Go to the DMS service and create a Replication Instance.
Step 4: Create source and target endpoint and test the connection from the Replication Instance.
Once both the endpoints are created, it will look as shown below:
Step 5: Once Replication Instance and endpoints are created, create a Replication task. The Replication task will take care of your migration of data.
Step 6: Select the table name and schema, which you want to migrate. You can use % as wildcards for multiple tables/schema.
Step 7: Once setup is done, start the Replication task.
Step 8: Once the Replication task is completed, you can see the entire details along with the assessment report.
Step 9: Now, since the Replication task has completed its activity, let us check the data in Redshift to know whether the data has been migrated.
As shown in the steps above, DMS is pretty handy when it comes to Replicating data from Aurora to Redshift but it requires performing a few manual activities.
Pros of Moving Data from Aurora to Redshift using AWS DMS
Data movement is secure as Data Security is fully managed internally by AWS.
No Database downtime is needed during the Migration.
Replication task setup requires just a few seconds.
Depending upon the volume of Data Migration, users can select the Replication Instance type and the Replication task will take care of migrating the data.
You can migrate your data either in Full mode or in CDC mode. In case your Replication task is running, a change in the data in the source Database will automatically reflect in the target database.
DMS migration steps can be easily monitored and troubleshot using Cloudwatch Logs and Metrics. You can even generate notification emails depending on your rules.
Migrating data to Redshift using DMS is free for 6 months.
Cons of Moving Data from Aurora to Redshift using AWS DMS
While copying data from Aurora to Redshift using AWS DMS, it does not support SCT (Schema Conversion Tool) for your Automatic Schema conversion which is one of the biggest demerits of this setup.
Due to differences in features of the Aurora Database and Redshift Database, you need to perform a lot of manual activities for the setup i.e. DMS does not support moving Stored Procedures since in Redshift there is no concept of Stored Procedures, etc.
Replication Instance has a limitation on storage limit. It supports up to 6 TB of data.
You cannot migrate data from Aurora from one region to another region meaning both the Aurora Database and Redshift Database should be in the same region.
Conclusion
Overall the DMS approach of replicating data from Aurora to Redshift is satisfactory, however, you need to perform a lot of manual activities before the data movement. Few features that are not supported in Redshift have to be handled manually as SCT does not support Aurora to Redshift data movement.
In a nutshell, if your manual setup is ready and taken care of you can leverage DMS to move data from Aurora to Redshift. You can also refer to our other blogs where we have discussed Aurora to Redshift replication using AWS Glue and AWS Data Pipeline.
LIKE.TG Data provides an Automated No-code Data Pipeline that empowers you to overcome the above-mentioned limitations. LIKE.TG caters to 100+ data sources (including 40+ free sources) and can seamlessly transfer your data from Aurora PostgreSQL to Redshift within minutes. LIKE.TG ’s Data Pipeline enriches your data and manages the transfer process in a fully automated and secure manner without having to write any code. It will make your life easier and make data migration hassle-free.
Learn more about LIKE.TG
Want to take LIKE.TG for a spin? Sign Up for a 14-day free trial and experience the feature-rich LIKE.TG suite first hand.
You can also have a look at our unbeatable pricing that will help you choose the right plan for your business needs!
TokuDB to Snowflake: 2 Easy Methods
The need to store, transform, analyze and share data is growing exponentially, with demand for cloud-based data analytics and data warehouse solutions also on the rise. Using the cloud for data processing, analytics, and reporting has now become quite popular mainly due to its convenience and superior performance.In this blog post, we will go over a migration scenario where a fictional business is attempting to migrate their data from an on-prem TokuDB to Snowflake, a cloud-based data warehouse. To this aim, let’s first compare both solutions.Introduction to TokuDB
TokuDB is a highly scalable MySQL and MariaDB storage engine. It offers high data compression, fast insertions, and deletions, among many other features. This makes it a great solution for use in high-performance and write-intensive environments. It uses a fractal tree data structure and huge data pages to efficiently manage and read the data. However, concurrency, scale, resiliency, and security are some of the bottlenecks that limit TokuDB’s performance. It is available in an open-source version and an enterprise edition.
Solve your data replication problems with LIKE.TG ’s reliable, no-code, automated pipelines with 150+ connectors.Get your free trial right away!
Introduction to Snowflake
Snowflake is a cloud data warehouse that came out in 2015. It is primarily available on AWS and Azure. Snowflake is similar to BigQuery in that it stores data separately from where it does its compute. It stores the actual data of your tables in S3 and then it can provision any number of compute nodes to process that data.
In contrast, Snowflake offers instant access to unlimited resources (compute and storage) on-demand.
Snowflake Benefits:
Snowflake is specifically optimized for analytics workloads. It’s therefore ideal for businesses dealing with very complex data sets.Snowflake offers better performance both in terms of storage capacity and query performance.Snowflake also offers better security compared to an on-prem data warehouse. This is because cloud data warehouses are required to meet stringent security requirements.Migrating your data to the cloud is also cost-effective since there is no huge initial outlay and you don’t have to maintain physical infrastructure.
Moving Data from TokuDB to Snowflake
Method 1: Using Custom ETL Scripts to Connect TokuDB to Snowflake
This approach would need you to invest in heavy engineering resources. The broad steps in this approach would need you to understand the S3 data source, write code to extract data from S3, prepare the data, and finally copy it into Snowflake. The details and challenges of each step are described in the next sections.
Method 2: Using LIKE.TG to Connect TokuDB to Snowflake
LIKE.TG is a cloud data pipeline platform that seamlessly moves data from TokuDB to Snowflake in real-time without having to write any code. By deploying LIKE.TG , the data transfer can be completely automated and would not need any human intervention. This will allow you to direct your team’s bandwidth in extracting meaningful insights instead of wrangling with code.
Get Started with LIKE.TG for Free
LIKE.TG ’s pre-built integration with TokuDB (among 100+ Sources) will take full charge of the data transfer process, allowing you to focus on key business activities.
Methods to Connect TokuDB to Snowflake
Here are the methods you can use to establish a connection from TokuDB to Snowflake:
Method 1: Using Custom ETL Scripts to Connect TokuDB to SnowflakeMethod 2: Using LIKE.TG to Connect TokuDB to Snowflake
Method 1: Using Custom ETL Scripts to Connect TokuDB to Snowflake
Here are the steps involved in using Custom ETL Scripts to connect TokuDB and Snowflake:
Step 1: Export TokuDB Tables to CSV FormatStep 2: Upload Source Data Files to Amazon S3Step 3: Create an Amazon S3 StageStep 4: Create a Table in SnowflakeStep 5: Loading Data to SnowflakeStep 6: Validating the Connection from TokuDB to Snowflake
Step 1: Export TokuDB Tables to CSV Format
There are multiple ways to backup a TokuDB database and we will be using a simple SQL command to perform a logical backup.
SELECT * FROM `database_name`.`table_name` INTO OUTFILE 'path_to_folder/filename.csv'
FIELDS ENCLOSED BY '"' TERMINATED BY ';' ESCAPED BY '"' LINES TERMINATED BY 'rn';"
This command dumps the data into CSV format which can then easily be imported into Snowflake.
Repeat this command for all tables and ensure that your TokuDB server has enough storage space to hold the CSV files.
Step 2: Upload Source Data Files to Amazon S3
After generating the CSV/TXT file, we need to upload this data to a place where Snowflake can access it. Install the AWS CLI on your system
How to install the AWS CLI
After that execute the following command.
aws s3 cp filename.csv s3://{YOUR_BUCKET_NAME}
Step 3: Create an Amazon S3 Stage
Using the SnowSQL CLI client, run this command:
create or replace stage my_csv_stage
file_format = mycsvformat
url = 's3://{YOUR_BUCKET_NAME}';
The example above creates an external stage named my_csv_stage.
Step 4: Create a Table in Snowflake
Create a table with your schema. You will load data into this table in the next step.
create or replace table {YOUR_TABLE_NAME}
('$TABLE_SCHEMA')
Step 5: Loading Data to Snowflake
Loading data requires a Snowflake compute cluster.Run the following command in the SnowSQL CLI client:
copy into {YOUR_TABLE_NAME}
from s3://{YOUR_BUCKET_NAME} credentials=(aws_key_id='$AWS_ACCESS_KEY_ID' aws_secret_key='$AWS_SECRET_ACCESS_KEY')
file_format = (type = csv field_delimiter = '|' skip_header = 1);
This command will load data from all CSV files in the S3 bucket.
Step 6: Validating the Connection from TokuDB to Snowflake
select * from {YOUR_TABLE_NAME} limit 10;
The above approach is effort-intensive. You would need to hand-code many steps that run coherently to achieve the objective.
Limitations of Using Custom ETL Scripts to Connect TokuDB to Snowflake
This method is ideal for a one-time bulk load. In case you are looking to stream data in real-time, you might have to configure cron jobs and write additional code to achieve this.More often than not, the use case to move data from TokuDB to Snowflake is not this straightforward. You might need to clean, transform and enrich the data to make it analysis-ready. This would not be easy to achieve.Since the data moved from TokuDB is critical to your business, you will need to constantly monitor the infrastructure to ensure that nothing breaks. Failure at any step would lead you to irretrievable data loss.
Method 2: Using LIKE.TG to Connect TokuDB to Snowflake
UsingLIKE.TG (Official Snowflake ETL partner)— a managed system that simplifies data migration. LIKE.TG is fully managed and completely automates the process of not only loading data from your desired source but also enriching the data and transforming it into an analysis-ready form without having to write a single line of code. Its fault-tolerant architecture ensures that the data is handled in a secure, consistent manner with zero data loss.
Sign up here for a 14-Day Free Trial!
LIKE.TG takes care of all your data preprocessing to set up TokuDB Snowflake Integration and lets you focus on key business activities and draw a much powerful insight on how to generate more leads, retain customers, and take your business to new heights of profitability. It provides a consistent reliable solution to manage data in real-time and always have analysis-ready data in your desired destination.
Moving data from TokuDB to Snowflake requires just 2 steps:
Step 1: Connect to your TokuDB database by providing connection settings.
Step 2: Select the mode of replication you want: (a) Load the result set of a Custom Query (b) Full dump of tables (c) Load data via log
Step 3: Configure the Snowflake destination by providing the details like Destination Name, Account Name, Account Region, Database User, Database Password, Database Schema, and Database Name.
Check out what makes LIKE.TG amazing:
Real-Time Data Transfer: LIKE.TG with its strong Integration with 100+ sources, allows you to transfer data quickly efficiently. This ensures efficient utilization of bandwidth on both ends.Data Transformation: It provides a simple interface to perfect, modify, and enrich the data you want to transfer.Secure: LIKE.TG has a fault-tolerant architecture that ensures that the data is handled in a secure, consistent manner with zero data loss.Tremendous Connector Availability: LIKE.TG houses a large variety of connectors and lets you bring in data from numerous Marketing SaaS applications, databases, etc. such as Google Analytics 4, Google Firebase, Airflow, HubSpot, Marketo, MongoDB, Oracle, Salesforce, Redshift, etc. in an integrated and analysis-ready form.Simplicity: Using LIKE.TG is easy and intuitive, ensuring that your data is exported in just a few clicks.Completely Managed Platform: LIKE.TG is fully managed. You need not invest time and effort to maintain or monitor the infrastructure involved in executing codes.Live Support: The LIKE.TG team is available round the clock to extend exceptional support to its customers through chat, email, and support calls.
That is it, LIKE.TG will now take care of reliably loading data from TokuDB to Snowflake in real-time.
Conclusion
This blog talks about the two methods you can use to set up TokuDB Snowflake Integration in a seamless fashion: using custom ETL code and a third-party tool, LIKE.TG .
Extracting complex data from a diverse set of data sources can be a challenging task and this is where LIKE.TG saves the day!
Visit our Website to Explore LIKE.TG
In addition to TokuDB, LIKE.TG can also bring data from a wide array of data sources into Snowflake. Database (MySQL, PostgreSQL, MongoDB and more), Cloud Applications (Google Analytics, Google Ads, Facebook Ads, Salesforce, and more). This allows LIKE.TG to scale on-demand as your data needs grow.
Sign Up for a full-feature free trial (14 days) to see the simplicity of LIKE.TG first-hand. You can also have a look at the unbeatable pricing that will help you choose the right plan for your business needs.
Google Analytics to Snowflake: 2 Easy Methods
Google Analytics is the most popular web analytics service on the market, used to gather crucial information on website events: web traffic, purchases, signups, and other aspects of browser/customer behavior. However, the vast amount of data that Analytics provides makes it necessary for many users to search for ways to more deeply analyze the information found within the platform. Enter Snowflake, a platform designed from the ground up to be a cloud-based data warehouse. You can read more about Snowflake here. For many users of Analytics, Snowflake is the ideal solution for their data analysis needs, and in this article, we will walk you through the process of moving your data from Google Analytics to Snowflake.Introduction to Google Analytics
Google Analytics (GA) is a Web Analytics service that offers Statistics and basic Analytical tools for your Search Engine Optimization (SEO) and Marketing needs. It’s free and part of Google’s Marketing Platform, so anyone with a Google account may take advantage of it.
Google Analytics is used to monitor website performance and gather visitor data. It can help organizations identify the most popular sources of user traffic, measure the success of their Marketing Campaigns and initiatives, track objective completion, discover patterns and trends in user engagement, and obtain other visitor information, such as demographics. To optimize Marketing Campaigns, increase website traffic, and better retain visitors, small and medium-sized retail websites commonly leverage Google Analytics.
Here are the key features of Google Analytics:
Conversion Tracking: Conversion points (such as a contact form submission, e-commerce sale, or phone call) can be tracked in Google Analytics once they have been recognized on your website. You’ll be able to observe when someone converted, the traffic source that referred them, and much more.Third-Party Referrals: A list of third-party websites that sent you traffic will be available. That way you’ll know which sites are worth spending more time on, as well as if any new sites have started linking to yours.Custom Dashboards: You can create semi-custom Dashboards for your analytics with Google Analytics. You can add Web Traffic, Conversions, and Keyword Referrals to your dashboard if they’re essential to you. To share your reports, you can export your dashboard into PDF or CSV format.Traffic Reporting: Google Analytics is essentially a traffic reporter. How many people visit your site each day will be revealed by the service’s statistics. You may also keep track of patterns over time, which can help you make better decisions about online Marketing.
Solve your data replication problems with LIKE.TG ’s reliable, no-code, automated pipelines with 150+ connectors.Get your free trial right away!
Introduction to Snowflake
Snowflake is a cloud data warehouse that came out in 2015. It is primarily available on AWS and Azure.Snowflakeis similar to BigQuery in that it stores data separately from where it does its compute. It stores the actual data of your tables in S3 and then it can provision any number of compute nodes to process that data.
In contrast, Snowflake offers instant access to unlimited resources (compute and storage) on-demand.
Snowflake Benefits:
Snowflake is specifically optimized for analytics workloads. It’s therefore ideal for businesses dealing with very complex data sets.Snowflake offers better performance both in terms of storage capacity and query performance.Snowflake also offers better security compared to an on-prem data warehouse. This is because cloud data warehouses are required to meet stringent security requirements.Migrating your data to the cloud is also cost-effective since there is no huge initial outlay and you don’t have to maintain physical infrastructure.
Methods to Move data from Google Analytics to Snowflake
Before we get started, there are essentially two ways to move your data from Google Analytics to Snowflake:
Method 1: Using Custom ETL Scripts to Move Data from Google Analytics to Snowflake
This would need you to understand the Google Analytics API, build a code to bring data from it, clean and prepare the data and finally, load it to Snowflake. This can be a time-intensive task and (let’s face it) not the best use of your time as a developer.
Method 2: Using LIKE.TG Data to Move Data from Google Analytics to Snowflake
LIKE.TG , a Data Integration Platform gets the same results in a fraction of time with none of the hassles. LIKE.TG can help you bring Google Analytics data to Snowflake in real-time for free without having to write a single line of code.
Get Started with LIKE.TG for Free
LIKE.TG ’s pre-built integration with Google Analytics (among 100+ Sources) will take full charge of the data transfer process, allowing you to focus on key business activities.
This article provides an overview of both the above approaches. This will allow you to assess the pros and cons of both and choose the route that suits your use case best
Understanding the Methods to Connect Google Analytics to Snowflake
Here are the methods you can use to establish a connection from Google Analytics to Snowflake:
Method 1: Using Custom ETL Scripts to Move Data from Google Analytics to SnowflakeMethod 2: Using LIKE.TG Data to Move Data from Google Analytics to Snowflake
Method 1: Using Custom ETL Scripts to Move Data from Google Analytics to Snowflake
Here are the steps you can use to set up a connection from Google Analytics to Snowflake using Custom ETL Scripts:
Step 1: Accessing Data on Google AnalyticsStep 2: Transforming Google Analytics DataStep 3: Transferring Data from Google Analytics to SnowflakeStep 4: Maintaining Data on Snowflake
Step 1: Accessing Data on Google Analytics
The first step in moving your data is to access it, which can be done using the Google Analytics Reporting API. Using this API, you can create reports and dashboards, both for use in your Analytics account as well as in other applications, such as Snowflake. However, when using the Reporting API, it is important to remember that only those with a paid Analytics 360 subscription will be able to utilize all the features of the API, such as viewing event-level data, while users of the free version of Analytics can only create reports using less targeted aggregate data.
Step 2: Transforming Google Analytics Data
Before transferring data to Snowflake, the user must define a complete and well-ordered schema for all included data. In some cases, such as with JSON or XML data types, data does not need a schema in order to be transferred directly to Snowflake. However, many data types cannot be moved quite so readily, and if you are dealing with (for example) Microsoft SQL server data, more work is required on the part of the user to ensure that the data is compatible with Snowflake.
Google Analytics reports are conveniently expressed in the manner of a spreadsheet, which maps well to the similarly tabular data structures of Snowflake. On the other hand, it is important to remember that these reports are samples of primary data, and as such, may contain different values during separate report instances, even over the same time period sampled.
Because Analytics reports and Snowflake data profiles are so similarly structured, a common technique is to map each key embedded in a Report API endpoint response to a mirrored column on the Snowflake data table, thereby ensuring a proper conversion of necessary data types. Because data conversion is not automatic, it is incumbent on the user to revise data tables to keep up with any changes in primary data types.
Step 3: Transferring Data from Google Analytics to Snowflake
There are three primary ways of transferring your data to Snowflake:
COPY INTO – The COPY INTO command is perhaps the most common technique for data transferral, whereby data files (stored either locally or in a storage solution like Amazon S3 buckets) are copied into a data warehouse.PUT – The PUT command may also be used, which allows the user to stage files prior to the execution of the COPY INTO command.Upload – Data files can be uploaded into a service such as the previously mentioned Amazon S3, allowing for direct access of these files by Snowflake.
Step 4: Maintaining Data on Snowflake
Maintaining an accurate database on Snowflake is a never-ending battle; with every update to Google Analytics, older data on Snowflake must be analyzed and updated to ensure the integrity of the overarching data tables. This task is made somewhat easier by creating UPDATE statements in Snowflake, but you must also take care to identify and delete any duplicate records that appear in the database.
Overall, maintenance of your newly-created Snowflake database can be a time-consuming project, which is all the more reason to look for time-saving solutions such as LIKE.TG .
Limitations of Using Custom ETL Scripts to Connect Google Analytics to Snowflake
Although there are other methods of integrating data from Google Analytics to Snowflake, those not using LIKE.TG must be prepared to deal with a number of limitations:
Heavy Engineering Bandwidth: Building, testing, deploying, and maintaining the infrastructure necessary for proper data transfer requires a great deal of effort on the end user’s part.Not Automatic: Each time a change is made in Google Analytics, time must be taken to manually alter the code to ensure data integrity.Not Real-time: The steps as set out in this article must be performed every single time data is moved from Analytics to Snowflake. For most users, who will be moving data on a regular basis, following these steps every time will be a cumbersome, time-consuming ordeal.Possibility of Irretrievable Data Loss: If at any point during this process an error occurs say, something changes in Google Analytics API or on Snowflake, serious data corruption and loss can result.
Method 2: Using LIKE.TG Data to Move Data from Google Analytics to Snowflake
LIKE.TG is fully managed and completely automates the process of not only loading data from your desired source but also enriching the data and transforming it into an analysis-ready form without having to write a single line of code. Its fault-tolerant architecture ensures that the data is handled in a secure, consistent manner with zero data loss.
Sign up here for a 14-Day Free Trial!
LIKE.TG takes care of all your data preprocessing to set up a connection from Google Analytics to Snowflake and lets you focus on key business activities and draw a much powerful insight on how to generate more leads, retain customers, and take your business to new heights of profitability. It provides a consistent reliable solution to manage data in real-time and always have analysis-ready data in your desired destination.
LIKE.TG being an official Snowflake partner, can connect Google Analytics to Snowflake in 2 simple steps:
Step 1: Connect LIKE.TG with Google Analytics 4 and all your data sources by simply logging in with your credentials.
Step 2: Configure the Snowflake destination by providing the details like Destination Name, Account Name, Account Region, Database User, Database Password, Database Schema, and Database Name.
LIKE.TG will now take care of all the heavy-weight lifting to move data from Google Analytics to Snowflake. Here are some of the benefits of LIKE.TG :
Reduced Time to Implementation: With a few clicks of a mouse, users can swiftly move their data from source to destination. This will drastically reduce time to insight and help your business make key decisions faster.End to End Management: The burden of overseeing the inessential minutiae of data migration is removed from the user, freeing them to make more efficient use of their time.A Robust System for Alerts and Notifications: LIKE.TG offers users a wide array of tools to ensure that changes and errors are detected and that the user is notified as to their presence.Complete, Consistent Data Transfer: Whereas some data migration solutions can lead to the loss of data as errors appear, LIKE.TG uses a proprietary staging mechanism to quarantine problematic data fields so that the user can fix errors on a case-to-case basis and move this data.Comprehensive Scalability: With LIKE.TG , it is no problem to incorporate new data sets, regardless of file size. In addition to Google Analytics, LIKE.TG is also able to interface with a number of other analytics, marketing, and cloud applications; LIKE.TG aims to be the one-source solution for all your data transfer needs.24/7 Support: LIKE.TG provides a team of product experts, ready to assist 24 hours a day, 7 days a week.
Simplify your Data Analysis with LIKE.TG today!
Conclusion
For users who seek a more in-depth understanding of their web traffic, moving data from Google Analytics to their Snowflake data warehouse becomes an important feat.
However, sifting through this can be an arduous and time-intensive process, a process that a tool like LIKE.TG can streamline immensely, with no effort needed from the user’s end. Furthermore, LIKE.TG is compatible with a 100+ data sources, including 40+ Free Sources like Google Analytics allowing the user to interface with databases, cloud storage solutions, and more.
Visit Our Website To Explore LIKE.TG
Still not sure that LIKE.TG is right for you?
Sign Up to try our risk-free, expense-free 14-day trial, and experience for yourself the ease and efficiency provided by the LIKE.TG Data Integration Platform. You can also have a look at the unbeatable pricing that will help you choose the right plan for your business needs.
Salesforce to BigQuery: 2 Easy Methods
Bringing your key sales, marketing and customer data from Salesforce to BigQuery is the right step towards building a robust analytics infrastructure. By merging this information with more data points available from various other data sources used by your business, you will be able to extract deep actionable insights that grow your business. Before we jump into the details, let us briefly understand each of these systems.Introduction to Salesforce
Salesforceis one of the world’s most renowned customer relationship management platforms. Salesforce comes with a wide range of features that allow you to manage your key accounts and sales pipelines.While Salesforce does provide analytics within the software, many businesses would want to extract this data, combine it with data from other sources such as marketing, product, and more to get deeper insights on the customer. By bringing the CRM data into a modern data warehouse like BigQuery, this can be achieved.
Key Features of Salesforce
Salesforce is one of the most popular CRM in the current business scenario and it is due to its various features. Some of these key features are:
Easy Setup:Unlike most CRMs, which usually take up to a year to completely get installed and deployed, Salesforce can be easily set up from scratch within few weeks only.
Ease of Use:Businesses usually have to spend more time putting it to use and comparatively much lesser time in understanding how Salesforce works.
Effective:Salesforce is convenient to use and can also be customized by businesses to meet their requirements. Due to this feature, users find the tool very beneficial.
Account Planning: Salesforce provides you with enough data about each Lead that your Sales Team can customize their approach for every potential Lead. This will increase their chance of success and the customer will also get a personalized experience.
Accessibility: Salesforce is a Cloud-based software, hence it is accessible from any remote location if you have an internet connection. Moreover, Salesforce has an application for mobile phones which makes it super convenient to use.
Reliably integrate data with LIKE.TG ’s Fully Automated No Code Data Pipeline
LIKE.TG ’s no-code data pipeline platform lets you connect over 150+ sources in a matter of minutes to deliver data in near real-time to your warehouse. LIKE.TG is the only real-time ELT No-code Data Pipeline platform that cost-effectively automates data pipelines that are flexible to your needs.
All of this combined with transparent pricing and 24×7 support makes us the most loved data pipeline software in terms of user reviews.
Take our 14-day free trial to experience a better way to manage data pipelines.
Get started for Free with LIKE.TG !
Introduction to Google BigQuery
Google BigQuery is a completely managed cloud data warehouse platform offered by Google. It is based on Google’s famous Dremel Engine. Since BigQuery is based on a serverless model, it provides you high level of abstraction. Since it is a completely managed warehouse, companies do not need to maintain any form of physical infrastructure and database administrators. BigQuery comes with a pay-as-you-go pricing model and allows to pay only for the queries run. is also very cost-effective as you only pay for the queries you run. These features together make BigQuery a very sought after data warehouse platform. You can read more about the key features of BigQuery here.
This blog covers two methods of loading data from Salesforce to Google BigQuery. The article also sheds light on the advantages/disadvantages of both approaches. This would give you enough pointers to evaluate them based on your use case and choose the right direction.
Methods to Connect Salesforce to BigQuery
There are several approaches to migrate Salesforce data to BigQuery. Salesforce bigquery connector is commonly integrated for the purpose of analyzing and visualizing Salesforce data in a BigQuery environment. Let us look at both the approaches to connect Salesforce to BigQuery in a little more detail:
Method 1: Move data from Salesforce to Google BigQuery using LIKE.TG
LIKE.TG , a No-code Data Pipeline, helps you directly transfer data from Salesforce and150+ other data sourcesto Data Warehouses such as BigQuery, Databases, BI tools, or a destination of your choice in a completely hassle-free automated manner.
Get Started with LIKE.TG for free
LIKE.TG Data takes care of all your data preprocessing needs and lets you focus on key business activities and draw a much powerful insight on how to generate more leads, retain customers, and take your business to new heights of profitability. It provides a consistent reliable solution to manage data in real-time and always have analysis-ready data in your desired destination.
LIKE.TG can integrate data from Salesforce to BigQuery in just 2 simple steps:
Step 1: Authenticate and configure your Salesforce data sourceas shown in the below image. To learn more about this step, visithere.
Learn more about configuring Salesforce from our documentation page.
To configure Salesforce as a source, perform the following steps;
Go to the Navigation Bar and click on the Pipelines.
In the Pipelines List View, click the + CREATE button.
Select Salesforce on the Select Source Type page.
Specify the necessary information in the Configure your Salesforce account page
Click on the Continue button to complete the source setup and proceed to configuring data ingestion and setting up the destination.
Step 2: CompleteSalesforce to BigQueryMigration by providing information about your Google BigQuery destination such as the authorized Email Address, Project ID, etc.
To configure Google BigQuery as your Destination, follow the steps;
Go to the Navigation Bar, and click the Destinations button.
In the Destinations List View, click the + CREATE button.
On the Add Destination page, select Google BigQuery as the Destination type
Specify the necessary information in the Configure your Google BigQuery warehouse page
Click on the Save Continue buttons to complete the destination setup.
Learn more about configuring BigQuery as destination here.
LIKE.TG ’s visual interface gives you a hassle-free means to quickly and easily migrate from Salesforce to BigQuery and also for free. Without any coding, all your Salesforce data will be ready for analysis within minutes.
Get started for Free with LIKE.TG !
Method 2: Move Data from Salesforce to BigQuery using Custom Scripts
The first step would be to decide what data you need to extract from the API and Salesforce has an abundance of APIs.
Salesforce REST APIs
Salesforce Bulk APIs
Salesforce SOAP APIs
Salesforce Streaming APIsYou may want to use Salesforce’s streaming API, so your data is always current.
Transform your data:Once you have extracted the data using one of the above approaches, you would need to do the following:
BigQuery supports loading data in CSV and JSON formats. If the API you use returns data in formats other than these (eg: XML), you would need to transform them before loading.
You also need to make sure your data types are supported by BIgQuery. Use this link BigQuery data types to learn more about BigQuery data types.
Upload the prepared data to Google Cloud Storage
Load to BigQuery from your GCS bucket using BigQuery’s command-line tool or any cloud SDK.
Salesforce to BigQuery:Limitations in writing Custom Code
When writing and managing API scripts you need to have the resources for coding, code reviews, test deployments, and documentation.
Depending on the use cases developed by your organization, you may need to amend API scripts; change the schema in your data warehouse; and make sure data types in source and destination match.
You will also need to have a system for data validation. This would help you be at peace that data is being moved reliably.
Each of these steps can make a substantial investment of time and resources. In today’s work setting, there are very few places with ‘standby’ resources that can take up the slack when major projects need more attention.
In addition to the above, you would also need to:
Watch out for Salesforce API for changes
Monitor GCS/BigQuery for changes and outages
Retain skilled people to rewrite or update the code as needed
If all of this seems like a crushing workload you could look at alternatives like LIKE.TG . LIKE.TG frees you from inspecting data flows, examining data quality, and rewriting data-streaming APIs. LIKE.TG gives you analysis-ready data so you can spend your time getting real-time business insights.
Method 3: Using CSV/Avro
This method involves using CSV/Avro files to export data from Salesforce into BigQuery. The steps are:
Inside your Salesforce data explorer panel, select the table that you want to export your data.
Click on ‘Export to Cloud Storage’ and select CSV as the file type. Then, select the compression type as GZIP (GNU Zip) or go ahead with the default value.
Download that file to the system.
Login to your BigQuery account. In the Data Explorer section, select “import” and choose “Batch Ingestion”.
Choose the file type as CSV/Avro. You can enable schema auto-detection or specify it specifically.
Add dataset and table name, and select “Import”.
The limitation of the method is that it becomes complex if you have multiple tables/files to import. Same goes for more than one data sources with constantly varying data.
Use cases for Migrating Salesforce to BigQuery
Organizations use Salesforce’s Data Cloud along with Google’s BigQuery and Vertex AI to enhance their customer experiences and tailor interactions with them. Salesforce BigQuery Integration enables organizations to combine and analyze data from their Salesforce CRM system with the powerful data processing capabilities of BigQuery. Let’s understand some real-time use cases for migrating salesforce to bigquery.
Retail: Retail businesses can integrate CRM data with non-CRM data such as real-time online activity and social media sentiment in BigQuery to help you understand the complete customer journey and subsequently when you implement customized AI models to forecast customer tendency. The outcome involves delivering highly personalized recommendations to customers through optimal channels like email, mobile apps, or social media.
Healthcare Organizations: CRM data, including appointment history and patient feedback, can be integrated with non-CRM data, such as patient demographics and medical history in BigQuery. The outcome is the prediction of patients who are susceptible to readmission, allowing for the creation of personalized care plans. This proactive approach enhances medical outcomes through preemptive medical care.
Financial institutions: Financial institutions have the capability to integrate CRM data encompassing a customer’s transaction history, credit score, and financial goals with non-CRM data such as market analysis and economic trends. By utilizing BigQuery, these institutions can forecast customers’ spending patterns, investment preferences, and financial goals. This valuable insight informs the provision of personalized banking services and offers tailored to individual customer needs.
Use cases for migrating Salesforce to BigQuery
Organizations use Salesforce’s Data Cloud along with Google’s BigQuery and Vertex AI to enhance their customer experiences and tailor interactions with them. Salesforce BigQuery Integration enables organizations to combine and analyze data from their Salesforce CRM system with the powerful data processing capabilities of BigQuery. Let’s understand some real-time use cases for migrating salesforce to bigquery.
Retail: Retail businesses can integrate CRM data with non-CRM data such as real-time online activity and social media sentiment in BigQuery to help you understand the complete customer journey and subsequently when you implement customized AI models to forecast customer tendency. The outcome involves delivering highly personalized recommendations to customers through optimal channels like email, mobile apps, or social media.
Healthcare Organizations: CRM data, including appointment history and patient feedback, can be integrated with non-CRM data, such as patient demographics and medical history in BigQuery. The outcome is the prediction of patients who are susceptible to readmission, allowing for the creation of personalized care plans. This proactive approach enhances medical outcomes through preemptive medical care.
Financial institutions: Financial institutions have the capability to integrate CRM data encompassing a customer’s transaction history, credit score, and financial goals with non-CRM data such as market analysis and economic trends. By utilizing BigQuery, these institutions can forecast customers’ spending patterns, investment preferences, and financial goals. This valuable insight informs the provision of personalized banking services and offers tailored to individual customer needs.
Conclusion
The blog talks about the two methods you can use to move data from Salesforce to BigQuery in a seamless fashion. The idea of custom coding with its implicit control over the entire data-transfer process is always attractive. However, it is also a huge resource load for any organization.
A practical alternative is LIKE.TG – a fault-tolerant, reliable Data Integration Platform. LIKE.TG gives you an environment free from any hassles, where you can securely move data from any source to any destination.
See how easy it is to migrate data from Salesforce to BigQuery and that too for free.
Visit our Website to Explore LIKE.TG
Want to take LIKE.TG for a spin? Sign Up for a 14-day free trial and experience the feature-rich LIKE.TG suite first hand. You can also have a look at the unbeatable pricing that will help you choose the right plan for your business needs.
MariaDB to Snowflake: 2 Easy Methods to Move Data in Minutes
Are you looking to move data from MariaDB to Snowflake for Analytics or Archival purposes? You have landed on the right post. This post covers two main approaches to move data from MariaDB to Snowflake. It also discusses some limitations of the manual approach. So, to overcome these limitations, you will be introduced to an easier alternative to migrate your data from MariaDB to Snowflake. How to Move Data from MariaDB to Snowflake?
Method 1: Implement an Official Snowflake ETL Partner such asLIKE.TG Data.
LIKE.TG is the only real-time ELT No-code Data Pipeline platform that cost-effectively automates data pipelines that are flexible to your needs. With integration with 150+ Data Sources (40+ free sources), we help you not only export data from sources load data to the destinations but also transform enrich your data, make it analysis-ready.
GET STARTED WITH LIKE.TG FOR FREE
Method 2: Build Custom ETL Scripts to move data from MariaDB to Snowflake
Organizations can enable scalable analytics, reporting, and machine learning on their valuable MariaDB data by customizing ETL scripts to integrate MariaDB transactional data seamlessly into Snowflake’s cloud data warehouse. However, the custom method can be challenging, which we will discuss later in the blog.
Method 1: MariaDB to Snowflake using LIKE.TG
Using a no-code data integration solution likeLIKE.TG (Official Snowflake ETL Partner), you can move data from MariaDB to Snowflake in real time. Since LIKE.TG is fully managed, the setup and implementation time is next to nothing. You can replicate MariaDB to Snowflake using LIKE.TG ’s visual interface in 2 simple steps:
Step 1: Connect to your MariaDB Database
ClickPIPELINESin theAsset Palette.
Click+ CREATEin thePipelines List View.
In theSelect Source Typepage, select MariaDB as your source.
In theConfigure yourMariaDBSourcepage, specify the following:
Step 2: Configure Snowflake as your Destination
ClickDESTINATIONSin theNavigation Bar.
Click+ CREATEin theDestinations List View.
In theAdd Destinationpage, selectSnowflakeas the Destination type.
In theConfigure yourSnowflake Warehousepage, specify the following:
To know more about MariabDB to Snowflake Integration, refer to LIKE.TG documentation:
MariaDB Source Connector
Snowflake as a Destination
SIGN UP HERE FOR A 14-DAY FREE TRIAL!
Method 2: Build Custom ETL Scripts to move data from MariaDB to Snowflake
Implementing MariaDB to Snowflake integration streamlines data flow and analysis, enhancing overall data management and reporting capabilities. At a high level, the data replication process can generally be thought of in the following steps:
Step 1: Extracting Data from MariaDB
Step 2: Data Type Mapping and Preparation
Step 3: Data Staging
Step 4: Loading Data into Snowflake
Step 1: Extracting Data from MariaDB
Data should be extracted based on the use case and the size of the data being exported.
If the data is relatively small, then it can be extracted using SQL SELECT statements into MariaDB’s MySQL command-line client.
Example:
mysql -u <name> -p <db> SELECT <columns> INTO OUTFILE 'path' FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' LINES TERMINATED BY 'n' FROM <table>;
With the FIELDS TERMINATED BY, OPTIONALLY ENCLOSED BY and LINES TERMINATED BY clauses being optional
If a user is looking to export large amounts of data, then MariaDB provides another command-line tool mysqldump which is better suited to export tables, a database or databases into other database servers. mysqldump creates a backup by dumping database or table information into a text file, which is typically in SQL. However, it can also generate files in other formats like CSV or XML.A use case extracting a full backup of a database is shown below:
mysqldump -h [database host's name or IP address] -u [the database user's name] -p [the database name] > db_backup.sql
The resulting file will consist of SQL statements that will create the database specified above.
Example (snippet):
CREATE TABLE table1 ( ‘Column1’ bigint(10)....... )
Step 2: Data Type Mapping and Preparation
Once the data is exported, one has to ensure that the data types in the MariaDB export properly correlate with their corresponding data types in Snowflake.
Snowflake presents documentation on data preparation before the Staging process here.
In general, it should be noted that the BIT data type in MariaDB corresponds to the BOOLEAN in Snowflake. Also, Large Object types (both BLOB and CLOB) and ENUM are not supported in Snowflake. The complete documentation on the data types that are not supported by Snowflake can be found here.
Step 3: Data Staging
The data is ready to be imported into the Staging area after we have ensured that the data types are accurately mapped.
There are two types of stages that a user can create in Snowflake. These are:
Internal Stages
External Stages
Each of these stages can be created using the Snowflake GUI or with SQL code. For the scope of this blog, we have included the steps to do this using SQL code.
Loading Data to Internal Stage:
CREATE [ OR REPLACE ] [ TEMPORARY ] STAGE [ IF NOT EXISTS ] <internal_stage_name> [ FILE_FORMAT = ( { FORMAT_NAME = '<file_format_name>' | TYPE = { CSV | JSON | AVRO | ORC | PARQUET | XML } [ formatTypeOptions ] ) } ] [ COPY_OPTIONS = ( copyOptions ) ] [ COMMENT = '<string_literal>' ]
Loading Data to External Stage:
Here is the code to load data to Amazon S3:
CREATE STAGE “[Database Name]”, “[Schema]”,”[Stage Name]” URL=’S3://<URL> CREDENTIALS= (AWS_KEY_ID=<your AWS key ID>, AWS_SECRET_KEY= <your AWS secret key>) ENCRYPTION= (MASTER_KEY=<Master key if required>) COMMENT= ‘[insert comment]’
In case you are using Microsoft Azure as your external stage, here is how you can load data:
CREATE STAGE “[Database Name]”, “[Schema]”,”[Stage Name]” URL=’azure://<URL> CREDENTIALS= (AZURE_SAS_TOKEN=’< your token>‘) ENCRYPTION= (TYPE = “AZURE_CSE, MASTER_KEY=<Master key if required>) COMMENT= ‘[insert comment]’
There are other internal stage types namely the table stage and the user stage. However, these stages are automatically generated by Snowflake. The table stage is held within a table object and is best used for use cases that require the staged data to be only used exclusively for a specific table. The user table is assigned to each user by the system and cannot be altered or dropped. They are used as personal storage locations for users.
Step 4: Loading Data to Snowflake
In order to load the staged data to Snowflake, we use the COPY INTO DML statement through Snowflake’s SQL command-line interface – SnowSQL. Note that using the FROM clause in the COPY INTO statement is optional, as Snowflake will automatically check for files in the stage. You can connect MariaDB to Snowflake to provide smooth data integration, enabling effective data analysis and transfer between the two databases.
Loading Data from Internal Stages:
User Stage Type:
COPY INTO TABLE1 FROM @~/staged file_format=(format_name=’csv_format’)
Table Stage Type:
COPY INTO TABLE1 FILE_FORMAT=(TYPE CSV FIELD DELIMITER=’|’ SKIP_HEADER=1)
Internal Stage Created as per the previous step:
COPY INTO TABLE1 FROM @Stage_name
Amazon S3:
While you can load data directly from an Amazon S3 bucket, the recommended method is to first create an Amazon S3 external stage as described under the Data Stage section of this guide. The same applies to Microsoft Azure and GCP buckets too.
COPY INTO TABLE1 FROM s3://bucket CREDENTIALS= (AWS_KEY_ID='YOUR AWS ACCESS KEY' AWS_SECRET_KEY='YOUR AWS SECRET ACCESS KEY') ENCRYPTION= (MASTER_KEY = 'YOUR MASTER KEY') FILE_FORMAT = (FORMAT_NAME = CSV_FORMAT)
Microsoft Azure:
COPY INTO TABLE1 FROM azure://your account.blob.core.windows.net/container STORAGE_INTEGRATION=(Integration_name) ENCRYPTION= (MASTER_KEY = 'YOUR MASTER KEY') FILE_FORMAT = (FORMAT_NAME = CSV_FORMAT)
GCS:
COPY INTO TABLE1 FROM 'gcs://bucket’ STORAGE_INTEGRATION=(Integration_name) ENCRYPTION= (MASTER_KEY = 'YOUR MASTER KEY') FILE_FORMAT = (FORMAT_NAME = CSV_FORMAT)
Loading Data from External Stages:
Snowflake offers and supports many format options for data types like Parquet, XML, JSON, and CSV. Additional information can be found here.
This completes the steps to load data from MariaDB to Snowflake. The MariaDB Snowflake integration facilitates a smooth and efficient data exchange between the two databases, optimizing data processing and analysis.
While the method may look fairly straightforward, it is not without its limitations.
Limitations of Moving Data from MariaDB to Snowflake Using Custom Code
Significant Manual Overhead: Using custom code to move data from MariaDB to Snowflake necessitates a high level of technical proficiency and physical labor. The process becomes more labor- and time-intensive as a result.
Limited Real-Time Capabilities: Real-time data loading capabilities are absent from the custom code technique when transferring data from MariaDB to Snowflake. It is, therefore, inappropriate for companies that need the most recent data updates.
Limited Scalability: The custom code solution may not be scalable for future expansion as data quantities rise, and it may not be able to meet the increasing needs in an effective manner.
So, you can use an easier alternative: LIKE.TG Data – Simple to use Data Integration Platform that can mask the above limitations and move data from MariaDB to Snowflake instantly.
There are a number of interesting use cases for moving data from MariaDB to Snowflake that might yield big advantages for your company. Here are a few important situations in which this integration excels:
Improved Reporting and Analytics:
Quicker and more effective data analysis: Large datasets can be queried incredibly quickly using Snowflake’s columnar storage and cloud-native architecture—even with datasets that MariaDB had previously been thought to be too sluggish for.
Combine data from various sources with MariaDB: For thorough analysis, you may quickly and easily link your MariaDB data with information from other sources in Snowflake, such as cloud storage, SaaS apps, and data warehouses.
Enhanced Elasticity and Scalability:
Scaling at a low cost: You can easily scale computing resources up or down according on your data volume and query demands using Snowflake’s pay-per-use approach, which eliminates the need to overprovision MariaDB infrastructure.
Manage huge and expanding datasets: Unlike MariaDB, which may have scaling issues, Snowflake easily manages big and expanding datasets without causing performance reduction.
Streamlined Data Management and Governance:
Centralized data platform: For better data management and governance, combine your data from several sources—including MariaDB—into a single, cohesive platform with Snowflake.
Enhanced compliance and data security: Take advantage of Snowflake’s strong security features and compliance certifications to guarantee your sensitive data is private and protected.
Simplified data access and sharing: Facilitate safe data exchange and granular access control inside your company to promote teamwork and data-driven decision making.
Conclusion
In this post, you were introduced to MariaDB and Snowflake. Moreover, you learned the steps to migrate your data from MariaDB to Snowflake using custom code. You observed certain limitations associated with this method. Hence, you were introduced to an easier alternative – LIKE.TG to load your data from MariaDB to Snowflake.
VISIT OUR WEBSITE TO EXPLORE LIKE.TG
LIKE.TG moves your MariaDB data to Snowflake in a consistent, secure and reliable fashion. In addition to MariaDB, LIKE.TG can load data from a multitude of other data sources including Databases, Cloud Applications, SDKs, and more. This allows you to scale up on demand and start moving data from all the applications important for your business.
Want to take LIKE.TG for a spin?
SIGN UP to experience LIKE.TG ’s simplicity and robustness first-hand.
Share your experience of loading data from MariaDB to Snowflake in the comments section below!
MongoDB to Redshift ETL: 2 Easy Methods
If you are looking to move data from MongoDB to Redshift, I reckon that you are trying to upgrade your analytics set up to a modern data stack. Great move!Kudos to you for taking up this mammoth of a task! In this blog, I have tried to share my two cents on how to make the data migration from MongoDB to Redshift easier for you.
Before we jump to the details, I feel it is important to understand a little bit on the nuances of how MongoDB and Redshift operate. This will ensure you understand the technical nuances that might be involved in MongoDB to Redshift ETL. In case you are already an expert at this, feel free to skim through these sections or skip them entirely.
What is MongoDB?
MongoDB distinguishes itself as a NoSQL database program. It uses JSON-like documents along with optional schemas. MongoDB is written in C++. MongoDB allows you to address a diverse set of data sets, accelerate development, and adapt quickly to change with key functionalities like horizontal scaling and automatic failover.
MondoDB is a best RDBMS when you have a huge data volume of structured and unstructured data. It’s features make scaling and flexibility smooth. These are available for data integration, load balancing, ad-hoc queries, sharding, indexing, etc.
Another advantage is that MongoDB also supports all common operating systems (Linux, macOS, and Windows). It also supports C, C++, Go, Node.js, Python, and PHP.
What is Amazon Redshift?
Amazon Redshift is essentially a storage system that allows companies to store petabytes of data across easily accessible “Clusters” that you can query in parallel. Every Amazon Redshift Data Warehouse is fully managed which means that the administrative tasks like maintenance backups, configuration, and security are completely automated.
Suppose, you are a data practitioner who wants to use Amazon Redshift to work with Big Data. It will make your work easily scalable due to its modular node design. It also us you to gain more granular insight into datasets, owing to the ability of Amazon Redshift Clusters to be further divided into slices. Amazon Redshift’s multi-layered architecture allows multiple queries to be processed simultaneously thus cutting down on waiting times. Apart from these, there are a few more benefits of Amazon Redshift you can unlock with the best practices in place.
Main Features of Amazon Redshift
When you submit a query, Redshift cross checks the result cache for a valid and cached copy of the query result. When it finds a match in the result cache, the query is not executed. On the other hand, it uses a cached result to reduce runtime of the query.
You can use the Massive Parallel Processing (MPP) feature for writing the most complicated queries when dealing with large volume of data.
Your data is stored in columnar format in Redshift tables. Therefore, the number of disk I/O requests to optimize analytical query performance is reduced.
Why perform MongoDB to Redshift ETL?
It is necessary to bring MongoDB’s data to a relational format data warehouse like AWS Redshift to perform analytical queries. It is simple and cost-effective to efficiently analyze all your data by using a real-time data pipeline. MongoDB is document-oriented and uses JSON-like documents to store data.
MongoDB doesn’t enforce schema restrictions while storing data, the application developers can quickly change the schema, add new fields and forget about older ones that are not used anymore without worrying about tedious schema migrations. Owing to the schema-less nature of a MongoDB collection, converting data into a relational format is a non-trivial problem for you.
In my experience in helping customers set up their modern data stack, I have seen MongoDB be a particularly tricky database to run analytics on. Hence, I have also suggested an easier / alternative approach that can help make your journey simpler.
In this blog, I will talk about the two different methods you can use to set up a connection from MongoDB to Redshift in a seamless fashion: Using Custom ETL Scripts and with the help of a third-party tool, LIKE.TG .
What Are the Methods to Move Data from MongoDB to Redshift?
These are the methods we can use to move data from MongoDB to Redshift in a seamless fashion:
Method 1: Using Custom Scripts to Move Data from MongoDB to Redshift
Method 2: Using an Automated Data Pipeline Platform to Move Data from MongoDB to Redshift
Integrate MongoDB to RedshiftGet a DemoTry it
Method 1: Using Custom Scripts to Move Data from MongoDB to Redshift
Following are the steps we can use to move data from MongoDB to Redshift using Custom Script:
Step 1: Use mongoexport to export data.
mongoexport --collection=collection_name --db=db_name --out=outputfile.csv
Step 2: Upload the .json file to the S3 bucket.2.1: Since MongoDB allows for varied schema, it might be challenging to comprehend a collection and produce an Amazon Redshift table that works with it. For this reason, before uploading the file to the S3 bucket, you need to create a table structure.2.2: Installing the AWS CLI will also allow you to upload files from your local computer to S3. File uploading to the S3 bucket is simple with the help of the AWS CLI. To upload.csv files to the S3 bucket, use the command below if you have previously installed the AWS CLI. You may use the command prompt to generate a table schema after transferring.csv files into the S3 bucket.
AWS S3 CP D:\outputfile.csv S3://S3bucket01/outputfile.csv
Step 3: Create a Table schema before loading the data into Redshift.
Step 4: Using the COPY command load the data from S3 to Redshift.Use the following COPY command to transfer files from the S3 bucket to Redshift if you’re following Step 2 (2.1).
COPY table_name
from 's3://S3bucket_name/table_name-csv.tbl'
'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
csv;
Use the COPY command to transfer files from the S3 bucket to Redshift if you’re following Step 2 (2.2). Add csv to the end of your COPY command in order to load files in CSV format.
COPY db_name.table_name
FROM ‘S3://S3bucket_name/outputfile.csv’
'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
csv;
We have successfully completed MongoDB Redshift integration.
For the scope of this article, we have highlighted the challenges faced while migrating data from MongoDB to Amazon Redshift. Towards the end of the article, a detailed list of advantages of using approach 2 is also given. You can check out Method 1 on our other blog and know the detailed steps to migrate MongoDB to Amazon Redshift.
Limitations of using Custom Scripts to Move Data from MongoDB to Redshift
Here is a list of limitations of using the manual method of moving data from MongoDB to Redshift:
Schema Detection Cannot be Done Upfront: Unlike a relational database, a MongoDB collection doesn’t have a predefined schema. Hence, it is impossible to look at a collection and create a compatible table in Redshift upfront.
Different Documents in a Single Collection: Different documents in single collection can have a different set of fields. A document in a collection in MongoDB can have a different set of fields.
{
"name": "John Doe",
"age": 32,
"gender": "Male"
}
{
"first_name": "John",
"last_name": "Doe",
"age": 32,
"gender": "Male"
}
Different documents in a single collection can have incompatible field data types. Hence, the schema of the collection cannot be determined by reading one or a few documents.
2 documents in a single MongoDB collection can have fields with values of different types.
{
"name": "John Doe",
"age": 32,
"gender": "Male"
"mobile": "(424) 226-6998"
}
{
"name": "John Doe",
"age": 32,
"gender": "Male",
"mobile": 4242266998
}
The fieldmobile is a string and a number in the above documents respectively. It is a completely valid state in MongoDB. In Redshift, however, both these values either will have to be converted to a string or a number before being persisted.
New Fields can be added to a Document at Any Point in Time: It is possible to add columns to a document in MongoDB by running a simple update to the document. In Redshift, however, the process is harder as you have to construct and run ALTER statements each time a new field is detected.
Character Lengths of String Columns: MongoDB doesn’t put a limit on the length of the string columns. It has a 16MB limit on the size of the entire document. However, in Redshift, it is a common practice to restrict string columns to a certain maximum length for better space utilization. Hence, each time you encounter a longer value than expected, you will have to resize the column.
Nested Objects and Arrays in a Document: A document can have nested objects and arrays with a dynamic structure. The most complex of MongoDB ETL problems is handling nested objects and arrays.
{
"name": "John Doe",
"age": 32,
"gender": "Male",
"address": {
"street": "1390 Market St",
"city": "San Francisco",
"state": "CA"
},
"groups": ["Sports", "Technology"]
}
MongoDB allows nesting objects and arrays to several levels. In a complex real-life scenario is may become a nightmare trying to flatten such documents into rows for a Redshift table.
Data Type Incompatibility between MongoDB and Redshift: Not all data types of MongoDB are compatible with Redshift. ObjectId, Regular Expression, Javascript are not supported by Redshift. While building an ETL solution to migrate data from MongoDB to Redshift from scratch, you will have to write custom code to handle these data types.
Method 2: Using Third Pary ETL Tools to Move Data from MongoDB to Redshift
White using the manual approach works well, but using an automated data pipeline tool like LIKE.TG can save you time, resources and costs. LIKE.TG Data is a No-code Data Pipeline platform that can help load data from any data source, such as databases, SaaS applications, cloud storage, SDKs, and streaming services to a destination of your choice. Here’s how LIKE.TG overcomes the challenges faced in the manual approach for MongoDB to Redshift ETL:
Dynamic expansion for Varchar Columns: LIKE.TG expands the existing varchar columns in Redshift dynamically as and when it encounters longer string values. This ensures that your Redshift space is used wisely without you breaking a sweat.
Splitting Nested Documents with Transformations: LIKE.TG lets you split the nested MongoDB documents into multiple rows in Redshift by writing simple Python transformations. This makes MongoDB file flattening a cakewalk for users.
Automatic Conversion to Redshift Data Types: LIKE.TG converts all MongoDB data types to the closest compatible data type in Redshift. This eliminates the need to write custom scripts to maintain each data type, in turn, making the migration of data from MongoDB to Redshift seamless.
Here are the steps involved in the process for you:
Step 1: Configure Your Source
Load Data from LIKE.TG to MongoDB by entering details like Database Port, Database Host, Database User, Database Password, Pipeline Name, Connection URI, and the connection settings.
Step 2: Intgerate Data
Load data from MongoDB to Redshift by providing your Redshift databases credentials like Database Port, Username, Password, Name, Schema, and Cluster Identifier along with the Destination Name.
LIKE.TG supports 150+ data sources including MongoDB and destinations like Redshift, Snowflake, BigQuery and much more. LIKE.TG ’s fault-tolerant and scalable architecture ensures that the data is handled in a secure, consistent manner with zero data loss.
Give LIKE.TG a try and you can seamlessly export MongoDB to Redshift in minutes.
GET STARTED WITH LIKE.TG FOR FREE
For detailed information on how you can use the LIKE.TG connectors for MongoDB to Redshift ETL, check out:
MongoDB Source Connector
Redshift Destination Connector
Additional Resources for MongoDB Integrations and Migrations
Stream data from mongoDB Atlas to BigQuery
Move Data from MongoDB to MySQL
Connect MongoDB to Snowflake
Connect MongoDB to Tableau
Conclusion
In this blog, I have talked about the 2 different methods you can use to set up a connection from MongoDB to Redshift in a seamless fashion: Using Custom ETL Scripts and with the help of a third-party tool, LIKE.TG .
Outside of the benefits offered by LIKE.TG , you can use LIKE.TG to migrate data from an array of different sources – databases, cloud applications, SDKs, and more. This will provide the flexibility to instantly replicate data from any source like MongoDB to Redshift.
More related reads:
Creating a table in Redshift
Redshift functions
You can additionally model your data, build complex aggregates and joins to create materialized views for faster query executions on Redshift. You can define the interdependencies between various models through a drag and drop interface with LIKE.TG ’s Workflows to convert MongoDB data to Redshift.
Amazon Aurora to BigQuery: 2 Easy Methods
In this day businesses are generating a huge amount of data regularly. To make important decisions this raw data is very essential. However, there are a few major challenges in the process. It is very difficult to analyze such a huge amount of data (Petabyte) using a traditional database like MySQL, Oracle, SQL Server, etc. In order to get any tangible insight from this data, you would need to move data to Data Warehouse like Google BigQuery. This post provides a step-by-step walkthrough on how to migrate data from Amazon Aurora to the BigQuery Data warehouse using 2 steps. Read along and decide which method suits you the best!Performing ETL from Amazon Aurora to BigQuery
Method 1: Using Custom Code to Move Data from Aurora to BigQuery
This method consists of a 5-step process to move data from Amazon Aurora to BigQuery through custom ETL Scripts. There are various advantages of using this method but a few limitations as well.
Method 2: Using LIKE.TG Data to Move Data from Aurora to BigQuery
LIKE.TG Data can load your data fromAurora to BigQueryin minutes without writing a single line of code and forfree. Data loading can be configured on a visual, point, and click interface. Since LIKE.TG is fully managed, you would not have to invest any additional time and resource in maintaining and monitoring the data. LIKE.TG promises 100% data consistency and accuracy.
Sign up here for a 14-day Free Trial!
Methods to Connect Aurora to BigQuery
Here are the methods you can use to connect Aurora to BigQuery in a seamless fashion:
Method 1: Using Custom Code to Move Data from Aurora to BigQuery
Method 2: Using LIKE.TG Data to Move Data from Aurora to BigQuery
In this post, we will cover the second method (Custom Code) in detail. Towards the end of the post, you can also find a quick comparison of both data replication methods so that you can evaluate your requirements and choose wisely.
Method 1: Using Custom Code to Move Data from Aurora to BigQuery
This method requires you to manually set up the data transfer process from Aurora to BigQuery. The steps involved in migrating data from Aurora DB to BigQuery are as follows:
Step 1: Getting Data out of Amazon Aurora
Step 2: Preparing Amazon Aurora Data
Step 3: Upload Data to Google Cloud Storage
Step 4: Upload to BigQuery from GCS
Step 5: Update the Target Table in BigQuery
Step 1: Getting Data out of Amazon Aurora
By writing SQL queries we can export data from Aurora. TheSELECT queries enable us to pull the data we want. You can specify filters and order of the data. You can also limit results.
A command-line tool called mysqldump lets you export entire tables and databases in a format you specify (i.e. delimited text, CSV, or SQL queries).
mysql -u user_name -p --database=db_name --host=rds_hostname --port=rdsport --batch -e "select * from table_name" | sed 's/t/","/g;s/^/"/;s/$/"/;s/n//g' > file_name
Step 2: Preparing Amazon Aurora Data
You need to make sure the target BigQuery table is perfectly aligned with the source Aurora table, specifically column sequence and data type of columns.
Step 3: Upload Data to Google Cloud Storage
You can use the bq command-line tool to upload the files to your datasets, adding schema and data type information. In GCP quickstart guide you can find the syntax of bq command line. Iterate through this process as many times as it takes to load all of your tables into BigQuery.
Once the data has been extracted from the Aurora database the next step is to upload it to the GCS There are multiple ways this can be achieved. The various methods are explained below.
(A) Using Gsutil
The gsutil utility will help us upload a local file to GCS(Google Cloud Storage) bucket.
To copy a file to GCS:
gsutil cp local_copy.csv gs://gcs_bucket_name/path/to/folder/
To copy an entire folder to GCS:
gsutil local_dir_name -r dir gs://gcs_bucket_name/path/to/parent_folder/
(B) Using Web console
An alternative means to upload the data from your local machine to GCS is using the web console. To use the web console alternative, follow the steps laid out below:
1. First of all, you need to Login to your GCP account. You ought to have a working Google account to make use of GCP. In the menu option, click on storage and navigate to the browser on the left tab
2. Create a new bucket to upload your data. Make sure the name you choose is globally unique
3. Click on the bucket name that you have created in step 2, this will ask to you browse the file from your local machine
4. Choose the file and click on the upload button. Once you see a progress bar wait for the action to be completed. You can see the file is loaded in the bucket.
Step 4: Upload to BigQuery from GCS
You can upload data to BigQuery from GCS using two methods: (A) Using console UI (B) Using the command line
(A) Uploading the data using the web console UI:
1. Go to the BigQuery from the menu option
2. On UI click on create a dataset, provide dataset name and location
3. Then click on the name of created dataset name. Click on create table option and provide the dataset name, table name, project name, table type.
(B) Using data using the command line
To open the command-line tool, on the GCS home page click on the cloud shell icon shown below:
The Syntax of the bq command line to load the file in the BigQuery table:
bq --location=[LOCATION] load --source_format=[FORMAT] [DATASET].[TABLE]
[PATH_TO_SOURCE] [SCHEMA]
[LOCATION] is an optional parameter that represents Location name like “us-east”
[FORMAT] to load CSV file set it to CSV
[DATASET] dataset name.
[TABLE] table name to load the data.
[PATH_TO_SOURCE] path to source file present on the GCS bucket.
[SCHEMA] Specify the schema
Note: Autodetect flag recognizes the table schema
You can specify your schema using bq command line:
bq --location=US load --source_format=CSV your_dataset.your_table gs://your_bucket/your_data.csv ./your_schema.json
Your target table schema can also be autodetected:
bq --location=US load --autodetect --source_format=CSV your_dataset.your_table gs://mybucket/data.cs
BigQuery command line interface offers us to 3 options to write to an existing table.
Overwrite the tablebq --location = US load --autodetect --replace --source_file_format = CSV your_target_dataset_name.your_target_table_name gs://source_bucket_name/path/to/file/source_file_name.csv
Append data to the table bq --location = US load --autodetect --noreplace --source_file_format = CSV your_target_dataset_name.your_table_table_name gs://source_bucket_name/path/to/file/source_file_name.csv ./schema_file.json
Adding new fields in the target table bq --location = US load --noreplace --schema_update_option = ALLOW_FIELD_ADDITION --source_file_format = CSV your_target_dataset.your_target_table gs://bucket_name/source_data.csv ./target_schema.json
Step 5: Update the Target Table in BigQuery
The data that was matched in the above-mentioned steps have not done complete data updates on the target table. The data is stored in an intermediate data table, this is because GCS is a staging area for BigQuery upload. Hence, the data is stored in an intermediate table before been uploaded to BigQuery
There two ways of updating the final table as explained below:
Update the rows in the final table, Then insert new rows from the intermediate tableUPDATE target_table t SET t.value = s.value FROM intermediate_table s WHERE t.id = s.id; INSERT target_table (id, value) SELECT id, value FROM intermediate_table WHERE NOT id IN (SELECT id FROM target_table);
Delete all the rows from the final table which are in the intermediate table, Then insert all the rows newly loaded in the intermediate table. Here the intermediate table will be in truncate and load mode DELETE FROM final_table f WHERE f.id IN (SELECT id from intermediate_table); INSERT data_setname.target_table(id, value) SELECT id, value FROM data_set_name.intermediate_table;
That’s it! Your Amazon Aurora to Google BigQuery data transfer process is complete.
Limitations of using Custom Code to Move Data from Aurora to BigQuery
The manual approach will allow you to move your data from Amazon Aurora to BigQuery successfully, however it suffers from the following limitations:
Writing custom code would benefit only if you are looking for one-time data migration from Amazon Aurora to BigQuery.
When you have a use case where data needs to be migrated on an ongoing basis or in real-time, you would have to move it in an incremental manner. The above custom code ETL would fail here. You would need to write additional lines of code to achieve this real-time data migration.
There are chances that the custom code breaks if the source schema gets changed.
If in future you identify the data transformations needs to be applied on data, you would need extra time and resources.
Since you have developed this custom code to migrate data you have to maintain the standard of the code to achieve the business goals.
In the custom code approach, You have to focus on both business and technical details.
ETL code is fragile with a high susceptibility to break the entire process that may cause inaccurate and delay in data availability in BigQuery.
Method 2: Using LIKE.TG Data to Move Data from Aurora to BigQuery
Using a fully managed, easy-to-use Data Pipeline platform likeLIKE.TG , you can load your data from Aurora to BigQuery in a matter of minutes. LIKE.TG is fully managed and completely automates the process of not only loading data from your desired source but also enriching the data and transforming it into an analysis-ready form without having to write a single line of code. Its fault-tolerant architecture ensures that the data is handled in a secure, consistent manner with zero data loss.
Get Started with LIKE.TG for free
This can be achieved in a code-free, point-and-click visual interface. Here are simple steps to replicate Amazon Aurora to BigQuery using LIKE.TG :
Step 1: Connect to your Aurora DB by providing the proper credentials.
Step 2: Select one of the following the replication mode:
Full dump (load all tables)
Load data from Custom SQL Query
Fetch data using BinLog
Step 3: CompleteAurora to BigQueryMigration by providing information about your Google BigQuery destination such as the authorized Email Address, Project ID, etc.
About Amazon Aurora
Amazon Aurora is a popular relational database developed by Amazon. It is one of the most widely used Databases for low latency data storage and data processing. This Database operates on Cloud technology and is easily compatible with MySQL and PostgreSQL. This way it provides performance and accessibility similar to traditional databases at a relatively low price. Moreover, it is simple to use and it has Amazon security and reliability features.
Amazon Aurora is a MySQL-compatible relational database used by businesses. Aurora offers better performance and cost-effective price than traditional MySQL. It is primarily used for a transactional or operational database. It is specifically not recommended for analytics.
About Google BigQuery
BigQuery is a Google-managed cloud-based data warehouse service. This is intended to store, process and analyze large volume (Petabytes) of data to make data analysis more accurate. BigQuery is known to give quick results with very minimal cost and great performance. Since infrastructure is managed by Google, you as a developer, data analyst or data scientist can focus on uncovering meaningful insights using native SQL.
Conclusion
This blog talks about the two methods you can implement to move data from Aurora to BigQuery in a seamless fashion.
Visit our Website to Explore LIKE.TG
With LIKE.TG , you can achieve simple and efficient Data Replication from Aurora to BigQuery. LIKE.TG can help you move data from not just Aurora DB but 100s of additional data sources.
Sign Up for a 14-Day Free Trial with LIKE.TG and experience a seamless, hassle-free data loading experience from Aurora DB to Google BigQuery. You can also have a look at the unbeatable pricing that will help you choose the right plan for your business needs.
Share your understanding of the Amazon Aurora BigQuery Integration in the comments below!
Zendesk to Redshift: 2 Easy Steps to Move Data
Getting data from Zendesk to Redshift is the right step towards centralizing your organization’s customer interactions and tickets. Analyzing this information can help you gain a deeper understanding of the overall health of your Customer Support, Agent Performance, Customer Satisfaction, and more. Eventually, you would be able to unlock deep insights that grow your business. What is Zendesk?
Zendesk is a Cloud-based all-in-one Customer Support Platform widely used by a broad spectrum of enterprises, from large corporations to small startups. Using any data — from anywhere — Zendesk presents businesses with a comprehensive view of the consumer. Hence, its products are built to include and innovate depending on user input collected through beta and Early Access Programs (EAPs).
Companies that have outgrown their current CRM or are investigating other systems, currently utilize Zendesk’s Support Platform, or deal with a high volume of incoming customer inquiries can benefit from Zendesk. The Zendesk Support Platform helps companies thrive in self-service and proactive engagement by delivering consistent support. Organizations can manage all of their one-on-one customer interactions using Zendesk’s one Customer Support Platform.
Zendesk CRM Software allows you to deliver personalized support where consumers expect it, expand your customer experience process, and optimize your operations. Businesses can find a range of Zendesk products with solutions catered to their needs. Out of its suite of CRM products, Zendesk Sunshine is a contemporary CRM Platform built on top of Amazon Web Services (AWS).
Zendesk CRM Software Products are simple and easy to use, thereby allowing business teams to focus on making the most of their time and energy by selling and answering customer questions. This helps in the expansion of businesses without disrupting software services.
For more information on Zendesk Solution, do visit Zendesk’s informative blog here.
Solve your data replication problems with LIKE.TG ’s reliable, no-code, automated pipelines with 150+ connectors.Get your free trial right away!
What is Amazon Redshift?
Amazon Redshift is a petabyte-scale, fully managed data warehouse service that stores data in the form of clusters that you can access with ease. It supports a multi-layered architecture that provides robust integration support for various business intelligence tools and a fast query processing functionality. Apart from business intelligence tools, you can also connect Amazon Redshift to SQL-based clients. It further allows users and applications to access the nodes independently.
Being a fully-managed warehouse, all administrative tasks associated with Amazon Redshift, such as creating backups, security, etc. are taken care of by Amazon.
For further information on Amazon Redshift, you can check our other post here.
For most recent updates on Amazon.com, Inc, visit the Amazon Statistics and Facts page
Methods to Move Data from Zendesk to Redshift
There are two popular methods to perform Zendesk to Redshift data replication.
Method 1: Copying your Data from Zendesk to Redshift Using Custom Scripts
You would have to spend engineering resources to write custom scripts to pull the data using Zendesk API, move data to S3, and then to Redshift destination tables. To achieve data consistency and ensure no discrepancies arise, you will have to constantly monitor and invest in maintaining the infrastructure.
Method 2: Moving your Data from Zendesk to Redshift Using LIKE.TG
LIKE.TG is an easy-to-use Data Integration Platform that can move your data from Zendesk (Data Source Available for Free in LIKE.TG ) to Redshift in minutes. You can achieve this on a visual interface without writing a single line of code. Since LIKE.TG is fully managed, you would not have to worry about any monitoring and maintenance activities. This will ensure that you stop worrying about data and start focussing on insights.
Get Started with LIKE.TG for Free
Methods to Move Data from Zendesk to Redshift
Method 1: Copying your Data from Zendesk to Redshift Using Custom ScriptsMethod 2: Moving your Data from Zendesk to Redshift Using LIKE.TG
Let us, deep-dive, into both these methods.
Method 1: Copying your Data from Zendesk to Redshift Using Custom Scripts
Here is a glimpse of the broad steps involved in this:
Write scripts for some or all of Zendesk’s APIs to extract data. If you are looking to get updated data on a periodic basis, make sure the script can fetch incremental data. For this, you might have to set up cron jobsCreate tables and columns in Redshift and map Zendesk’s JSON files to this schema. While doing this, you would have to take care of the data type compatibility between Zendesk data and Redshift. Redshift has a much larger list of datatypes than JSON, so you need to make sure you map each JSON data type into one supported by RedshiftRedshift is not designed for line-by-line updates or SQL “upsert” operations. It is recommended to use an intermediary such as AWS S3. If you choose to use S3, you will need to Create a bucket for your dataWrite an HTTP PUT for your AWS REST API using Curl or PostmanOnce the bucket is in place, you can then send your data to S3Then you can use a COPY command to get your data from S3 into Redshift In addition to this, you need to make sure that there is proper monitoring to detect any change in the Zendesk Schema. You would need to modify and update the script if there is any change in the incoming data structure
Method 2: Moving your Data from Zendesk to Redshift Using LIKE.TG
LIKE.TG is fully managed and completely automates the process of not only loading data from your desired source but also enriching the data and transforming it into an analysis-ready form without having to write a single line of code. Its fault-tolerant architecture ensures that the data is handled in a secure, consistent manner with zero data loss.
Using the LIKE.TG Data Integration Platform, you can seamlessly replicate data from Zendesk to Redshift with 2 simple steps.
Step 1: Configure the data source using Zendesk API token, Pipeline Name, Email, and Sub Domain.
Step 2: Configure the Redshift warehouse where you want to move your Zendesk data by giving the Database Port, Database User, Database Password, Database Name, Database Schema, Database Cluster Identifier, and Destination Name.
LIKE.TG does all the heavy-weightlifting and will ensure your data is moved reliably to Redshift in real-time.
Sign up here for a 14-Day Free Trial!
Advantages of Using LIKE.TG
The LIKE.TG Data Integration platform lets you move data from Zendesk (Data Source Available for Free in LIKE.TG ) to Redshift. Here are some other advantages:
No Data Loss – LIKE.TG ’s fault-tolerant architecture ensures that data is reliably moved from Freshdesk to Redshift without data loss.100’s of Out of the Box Integrations – In addition to Freshdesk, LIKE.TG can bring data from 100+ Data Sources (Including 30+ Free Data Sources)into Redshift in just a few clicks. This will ensure that you always have a reliable partner to cater to your growing data needs.Minimal Setup – Since LIKE.TG is fully managed, setting up the platform would need minimal effort and bandwidth from your end.Automatic schema detection and mapping – LIKE.TG automatically scans the schema of incoming Freshdesk data. If any changes are detected, it handles this seamlessly by incorporating this change on Redshift.Exceptional Support – LIKE.TG provides 24×7 support to ensure that you always have Technical support for LIKE.TG is provided on a 24/7 basis over both Email and Slack.
Challenges While Transferring Data from Zendesk to Redshift Using Custom Code
Before you write thousands of lines of code to copy your data, you need to familiarize yourself with the downside of this approach.
More often than not, you will need to monitor the Zendesk APIs for changes, check your data tables to make sure all columns are being updated correctly. Additionally, you have to come up with a data validation system to ensure all your data is being transferred accurately.
In an ideal world, all of this is perfectly doable. However, in today’s agile work environment, it usually means expensive engineering resources are scrambling just to stay on top of all the possible things that can go wrong.
Think about the following:
How will you know if an API has been changed by Zendesk?How will you find out when the Redshift is not available for writing?Do you have the resources to rewrite or update the code periodically?How quickly can you update the schema in Redshift in response to a request for more data?
On the other hand, a ready-to-use platform like LIKE.TG rids you of all these complexities. This will not only provide you with analysis-ready data but will also empower you to focus on uncovering meaningful insights instead of wrangling with Zendesk data.
Conclusion
The flexibility you get from building your own custom solution to move data from Zendesk to Redshift comes with a high and ongoing cost in terms of engineering resources.
In this article, you learned about Zendesk to Redshift Data Migration methods. You also learned about the Zendesk Software and Amazon Redshift Data warehouse. However, integrating and analyzing your data from a diverse set of data sources can be challenging and this is where LIKE.TG Data comes into the picture.
Visit our Website to Explore LIKE.TG
LIKE.TG is a No-code Data Pipeline and has awesome 100+ pre-built integrations that you can choose from. LIKE.TG can help you integrate your data from numerous sources such as Zendesk (Data Source Available for Free in LIKE.TG ) and load it into a destination to analyze real-time data with a BI tool and create your Dashboards. It will make your life easier and make data migration hassle-free. It is user-friendly, reliable, and secure.
Want to take LIKE.TG for a spin? Sign Up for a 14-day free trial and experience the feature-rich LIKE.TG suite first hand. You can also have a look at the unbeatablepricingthat will help you choose the right plan for your business needs.
Share your experience of learning about Zendesk to Reshift Data Migration. Let us know in the comments below!
Snowflake Data Warehouse 101: A Comprehensive Guide
Snowflake Data Warehouse delivers essential infrastructure for handling a Data Lake, and Data Warehouse needs. It can store semi-structured and structured data in one place due to its multi-clusters architecture that allows users to independently query data using SQL. Moreover, Snowflake as a Data Lake offers a flexible Query Engine that allows users to seamlessly integrate with other Data Lakes such as Amazon S3, Azure Storage, and Google Cloud Storage and perform all queries from the Snowflake Query Engine.This article will give you a comprehensive guide to Snowflake Data Warehouse. You will get to know about the architecture and performance of Snowflake Data Warehouse. You will also explore the Features, Pricing, Advantages, Limitations, and many more in further sections. Let’s get started.
What is Snowflake Data Warehouse?
Snowflake Data Warehouse is a fully managed, cloud data warehouse available to customers in the form of Software-as-a-Service (SaaS) or Database-as-a-Service (DaaS). The phrase ‘fully managed’ means users shouldn’t be concerned about any of the back-end work like server installation, maintenance, etc. A Snowflake Data Warehouse instance can easily be deployed on any of the three major cloud providers –
Amazon Web Services (AWS)
Google Cloud Storage (GCS)
Microsoft Azure
The customer can select which cloud provider they want for their Snowflake instance. This comes in handy for firms working with multiple cloud providers. Snowflake querying follows the standard ANSI SQL protocol and it supports fully structured as well as semi-structured data like JSON, Parquet, XML, etc.
To know more about Snowflake Data Warehouse, visit this link.
Architecture of Snowflake Data Warehouse
Here’s a diagram depicting the fundamental Snowflake architecture –
At the storage level, there exists cloud storage that includes both shared-disk (for storing persistent data) as well as shared-nothing (for massively parallel processing or MPP of queries with portions of data stored locally) entities. Ingested cloud data is optimized before storing in a columnar format. The data ingestion, compression, and storage are fully managed by Snowflake; as a matter of fact, this stored data is not directly accessible to users and can only be accessed via SQL queries.
Next up is the query processing level, this is where the SQL queries are executed. All the SQL queries are part of a particular cluster that consists of several compute nodes (this is customizable) and are executed in a dedicated, MPP environment. These dedicated MPPs are also known as virtual data warehouses. It is not uncommon for a firm to have separate virtual data warehouses for individual business units like sales, marketing, finance, etc. This setup is more costly but it ensures data integrity and maximum performance.
Finally, we have cloud services. As mentioned in the boxes, these are a bunch of services that help tie together the different units of Snowflake ranging from access control/data security to infrastructure and storage management. Know more about Snowflake Data Warehouse architecture here.
Performance of Snowflake Data Warehouse
The Snowflake Features has been designed for simplicity and maximum efficiency via parallel workload execution through the MPP architecture. The idea of increasing query performance is switched from the traditional manual performance tuning options like indexing, sorting, etc. to following certain generally applicable best practices. These include the following –
Workload Separation
Persisted or Cached Results
1. Workload Separation
Because it is super easy to spin up multiple virtual data warehouses with the desired number of compute nodes, it is a common practice to divide the workloads into separate clusters based on either Business Units (sales, marketing, etc.) or type of operation (data analytics, ETL/BI loads, etc.) It is also interesting to note that virtual data warehouses can be set to auto-suspend (default is 10 minutes) when they go inactive or in other words, no queries are being executed. This feature ensures that customers don’t accrue a lot of costs while having many virtual data warehouses operate in parallel.
2. Persisted or Cached Results
Query results are stored or cached for a certain timeframe (default is 24 hours). This is utilized when a query is essentially re-run to fetch the same result. Caching is done at two levels – local cache and result cache. Local cache provides the stored results for users within the same virtual data warehouse whereas result cache holds results that could be retrieved by users regardless of the virtual data warehouse they belong to.
ETL and Data Transfer in Snowflake Data Warehouse
ETL refers to the process of extracting data from a certain source, transform the source data to a certain format (typically the format that matches up to the target table) and load this data into the desired target table. The source and target are often two different entities or database systems. Some examples include a flat-file load into an Oracle table, a CRM data export into an Amazon Redshift table, data migration from a Postgres database onto a Snowflake Data Warehouse, etc.
Snowflake has been designed to connect to a multitude of data integrators using either a JDBC or an ODBC connection.
In terms of loading data, Snowflake offers two methods –
Bulk Loading This is basically batch loading of data files using the COPY command. COPY command lets users copy data files from the cloud storage into Snowflake tables. This step involves writing code that typically gets scripted to run at scheduled intervals.
Continuous LoadingIn this case, smaller amounts of data are extracted from the staging environment (as soon as they are available) and loaded in quick increments into a target Snowflake table. The feature named Snowpipe makes this possible.
Snowflake offers a bunch of transformation options for the incoming data before the load. This is achieved through the COPY command. Some of these include –
Reordering of columns
Column omissions
Casting columns in the select statement
When it comes to dealing with these intricacies of ETL, it is best to implement a fully managed Data Integration Software solution like LIKE.TG .
Scaling on Snowflake Data Warehouse
Previously, the article briefly touched on virtual data warehouses, clusters, nodes, etc. Now, let’s dive deeper into these areas to better understand how can one tweak these to enable scaling most efficiently.
Snowflake provides for two kinds of scaling –
Scaling up
Scaling out
1. Scaling up
Scaling up means resizing a virtual data warehouse in terms of its nodes. A Snowflake Data Warehouse user can easily modify the number of nodes assigned to a virtual data warehouse. This can be done even while the data warehouse is in operation, although, only the queries that are newly submitted or the ones already queued will be affected by the changes. Apart from the ‘auto suspend’ feature described before, there is a provision to set the minimum and a maximum number of nodes per warehouse.
After setting the maximum and the minimum number of nodes, let Snowflake decide when to scale up or down the number of nodes based on the warehouse activity. This is an efficient way to set up your cluster. Scaling is particularly suitable in the following cases –
To improve query performance in case of larger and more complex queries.
When the queries are submitted using the same local cache.
The option to scale out is not there.
Scaling out is generally preferred, especially with the more recent addition and availability of multi-cluster warehouses, which will be discussed next.
2. Scaling out
Scaling out before referred to adding more virtual data warehouses. However, with the advent of the recent multi-cluster warehouse feature, the old way has become more or less obsolete. So let’s get into the multi-cluster warehouse set up – as the name suggests, in this type of arrangement, a data warehouse can have multiple clusters each having a different set of nodes. Even though Snowflake provides for a ‘maximized’ option, which is an instruction for the data warehouse to have all of its clusters running regardless, almost always, you would want to set this to the ‘Auto-Scale’ mode. Here’s an example of how Auto scaling looks like –
As can be seen, you can set a bunch of parameters in a way that works best for you.
Features like Auto-scale and Auto-suspend provides flexibility for query execution as well as cost management. Let’s see how that works in the next section.
Pricing of Snowflake Data Warehouse
Snowflake has a fairly simple pricing model – charges apply to storage and compute aka virtual data warehouses. The storage is charged for every Terabyte (TB) of usage while compute is charged at a per second per computing unit (or credit) basis. Before getting into an example, it is worthwhile to note that Snowflake offers two broader pricing models –
On-demand – Pay per your usage of storage and compute
Pre-purchased – A set capacity of storage and compute could be pre-purchased at a discount as opposed to accruing the same usage at a higher cost via on-demand.
Now onto the usage pricing examples, the two popular on-demand pricing models available are as follows –
Snowflake Standard Edition
Snowflake Enterprise Sensitive Data Edition
1. Snowflake Standard Edition
Storage costs you around $23 per TB and computes costs would be approximately 4 cents per minute per credit, billed for a minimum time of one minute.
2. Snowflake Enterprise Sensitive Data Edition
Being a premium version with advanced encryption and security features as well as HIPAA compliance, storage costs roughly the same while compute gets bumped to around 6.6 cents per minute per credit.
The above charges for compute apply only to ‘active’ data warehouses and any inactive session time is ignored for billing purposes. This is why it’s important and profitable to set features like auto-suspend and auto-scale in a way as to minimize the charges accrued for idle warehouse periods.
Data Security Maintenance on Snowflake Data Warehouse
Data security is dealt with very seriously at all levels of the Snowflake ecosystem.
Regardless of the version, all data is encrypted using AES 256, and the higher-end enterprise versions have additional security features like period rekeying, etc.
As Snowflake is deployed on a cloud server like AWS or MS Azure, the staging data files (ready for loading/unloading) in these clouds get the same level of security as the staging files for Amazon Redshift or Azure SQL Data Warehouse. While in transit, the data is heavily protected using industrial-strength secure protocols. Know more about Snowflake Data Warehouse security here.
As for maintenance, Snowflake is a fully managed cloud data warehouse, end users have practically nothing to do to ensure a smooth day-to-day operation of the data warehouse. This helps customers tremendously to focus more on the front-end data operations like data analysis and insights generation, and not so much on the back-end stuff like server performance and maintenance activities.
Key Features of Snowflake Data Warehouse
Ever since the Snowflake Data Warehouse got into the growing cloud Data Warehouse market, it has established itself as a solid choice. That being said, here are some things to consider that might make it particularly suitable for your purposes –
It offers five editions going from ‘standard’ to ‘enterprise’. This is a good thing as customers have options to choose from based on their specific needs.
The ability to separate storage and compute is something to consider and how that relates to the kind of data warehousing operations you’d be looking for.
Snowflake is designed in a way to ensure the least user input and interaction required for any performance or maintenance-related activity. This is not a standard among cloud DWHs. For instance, Redshift needs user-driven data vacuuming.
It has some cool querying features like undrop, fast clone, etc. These might be worth checking out as they may account for a good chunk of your day-to-day data operations.
Pros and Cons of Snowflake Data Warehouse
Here are the advantages and disadvantages of using Snowflake Data Warehouse as your data warehousing solution –
Know more about Snowflake Data Warehouse features here.
Why was the Company Called Snowflake?
One of the reasons why the company called Snowflake is that Snowflake has many edges in multiple directions. So as the Snowflake Data Warehouse offers virtual Data Warehousing allowing users to create and organize Data Warehouses just like dimensions tables surround fact tables. The architecture of Snowflake Data Warehouse resembles the Snowflake. Another reason for its name is that the early investors and founders love the winter season, and the name is given as a tribute to it.
Alternatives for Snowflake Data Warehouse
The shift towards cloud data warehousing solutions picked up real pace in the late 2000s, mostly thanks to Google and Amazon. Since then, so many traditional database vendors like Microsoft, Oracle, etc. as well as newer players like Vertica, Panoply, etc. have entered this space. Having said that, let’s take a look at some of the popular alternatives to Snowflake.
Amazon Redshift vs Snowflake
Google BigQuery vs Snowflake
Azure SQL Data Warehouse vs Snowflake
1. Amazon Redshift vs Snowflake
The cloud data warehousing solution of one of the largest cloud providers (Amazon Web Services or AWS) in this domain that can work with Petabyte scale data. Supports fully structured as well as some semi-structured data like JSON, stored in columnar format. However, compute and storage are not separate like Snowflake. Generally, a costlier alternative to Snowflake but more robust and faster with optimizable tuning techniques like materialized views, sorting/distribution keys, etc.
2. Google BigQuery vs Snowflake
Also, a columnar, structured data warehouse that is part of the Google Cloud Services suite. It has other features comparable to Amazon Redshift like MPP architecture. It can be easily integrated with other data vendors, etc. BigQuery is similar to Snowflake in the sense that storage and compute are treated separately, however, instead of a discounted, pre-purchase pricing model (as in Snowflake), BigQuery services are charged monthly/yearly at a flat rate.
3. Azure SQL Data Warehouse vs Snowflake
Azure is gaining in popularity by the day and is especially known for performing analytics tasks. It is part of the Microsoft suite of products so there is a natural advantage for users and firms dealing with MS products and technologies like SQL Server, SSRS, SSIS, T-SQL, etc. Also, a columnar database, with storage and compute separated. Azure SQL engine is also known for its high level of concurrency.
How to Get Started with Snowflake?
Here are some resources for you to get started with Snowflake.
Snowflake Documentation: This is the official documentation from Snowflake about their services, features, and provides clarity on all aspects of this data warehouse.
Snowflake ecosystem of partner integrations. This takes you to their integration options to third-party partners and technologies having native connectivity to Snowflake. This includes various data integration solutions to BI tools to ML and data science platforms.
Pricing page: You can check out this link to know about their pricing plans which also contains guides and relevant contacts for Snowflake consultants.
Community forums: There are different Community Groups under major topics on Snowflake website. You can check out Snowflake Lab on GitHub or visit StackOverflow or Reddit forums as well.
Snowflake University and Hands-on Lab: This contains many courses for people with varying expertise levels.
YouTube channel: You can check out their YouTube for various videos that include tutorials, customer success videos etc.
Conclusion
As can be gathered from the article so far, the Snowflake Data Warehouse is a secure, scalable, and popular cloud data warehousing solution. It has achieved this status by constantly re-engineering and catering to a wide variety of industrial use cases that helped win over so many clients.You can have a good working knowledge of Snowflake by understandingSnowflake Create Table. You can have a look at 8 Best Data Warehousing Tools.
Visit our Website to Explore LIKE.TG
Frequently Asked Questions
Why Snowflake is better than SQL?
Snowflake’s approach to data modeling is a schema-less approach. This will help you to efficiently store and query data without a predefined schema. On the other hand, SQL Server has a traditional relational data modeling approach which needs creating schemas before you can store your data.
2. Snowflake warehouse vs. database
Snowflake and a database are different in the sense that Snowflake is built of database architectures and utilizes database tables to store data. It also uses massively parallel processing capability to compute clusters to process queries for the data stored in it. A database is an electronically stored and structured data collection.
3. What is the difference between Snowflake and ETL?
Snowflake is a good SaaS data cloud platform and data warehouse that can store and help you query your data efficiently. ETL (extract, transform and load) is the process of moving data from various data sources to a single destination such as a data warehouse.
Businesses can use automated platforms like LIKE.TG Data to set the integration and handle the ETL process. It helps you directly transfer data from a source of your choice to a Data Warehouse, Business Intelligence tools, or any other desired destination in a fully automated and secure manner without having to write any code and will provide you with a hassle-free experience.
Want to take LIKE.TG for a spin? Sign Up for a 14-day free trial and experience the feature-rich LIKE.TG suite first hand. You can also have a look at the unbeatable pricing that will help you choose the right plan for your business needs.
Share your experience of using Snowflake Data Warehouse
Google Ads to BigQuery: 2 Easy Methods
Google Ads is one of the modern marketer’s favorite channels to grow the business. If you are someone who has even glanced at the Google Ads interface would know that Google provides a gazillion data points to optimize and run personalized ads. The huge amount of diverse data points available makes performance tracking a complex and time-consuming task.Well, the complexity increases further when Businesses want to build a 360-degree understanding of how Google Ads fare in comparison to other marketing initiatives (Facebook Ads, LinkedIn Ads, etc.). To enable a detailed, convoluted analysis like this, it becomes important to extract and load the data from all the different marketing platforms used by a company to a robust cloud-based Data Warehouse like Google BigQuery. This blog talks about the different approaches to use when loading data from Google Ads to BigQuery.
What are the Methods to Connect Google Ads to BigQuery?
Here are the methods you can use to establish a connection from Google Ads to BigQuery in a seamless fashion:
Method 1: Using LIKE.TG to Connect Google Ads to BigQuery
Method 2: Using BigQuery Data Transfer Service to Connect Google Ads to BigQuery
Method 1: Using LIKE.TG to Connect Google Ads to BigQuery
LIKE.TG works out of the box with both Google Ads and BigQuery. This makes the data export from Google Ads to BigQuery a cakewalk for businesses. LIKE.TG is fully managed and completely automates the process of not only loading data from your desired source but also enriching the data and transforming it into an analysis-ready form without having to write a single line of code. Its fault-tolerant architecture ensures that the data is handled in a secure, consistent manner with zero data loss.
With LIKE.TG ’s point-and-click interface, you can load data in just two steps:
Step 1: Configure the Google Ads data source by providing required inputs like the Pipeline Name, Select Reports, and Select Accounts.
Step 2: Configure the BigQuery destination where the data needs to be loaded by providing details like Destination Name, Dataset ID, Project ID, GCS Bucket, and Sanitize Table/Column Names.
Once this is done, your data will immediately start moving from Google Ads to BigQuery.
Method 2: Using BigQuery Data Transfer Service to Connect Google Ads to BigQuery
Before you begin this process, you would need to create a Google Cloud project in the console and enable BigQuery’s API. Also, you need to enable billing on your Google Cloud project. This is a mandatory step that needs to be executed once per project. In case you already have set up a project, you would only need to enable the BigQuery API.
On the BigQuery platform, hit the “Create a Dataset” button and fill out the Dataset ID and Location fields. This will create a dedicated space for storing your Google Ads data.
Next, enable BigQuery Data Transfer Service from the web UI. Note – you would need to have admin access to transfer and update the data.
Click on the “Add Transfer” button. Select “Google Ads” in the source and destination dataset.
BigQuery’s data connector allows you to set up refresh windows (the max offered is 30 days) and a schedule to export the Google Ads data.
Now, enter your Google Ads Customer ID or Manager Account (MCC).
Next, allow the ‘Read’ access to the Google Ads Customer ID. This is needed for the transfer configuration.
It is generally a good practice to opt for email notification in case a loading failure occurs.
Despite this being a native integration with two products available from Google, there are a few limitations that make companies look out for other options.
Limitations of using BigQuery Data Transfer Service to Connect Google Ads to BigQuery
BigQuery Data Transfer Service supports a maximum of 180 days per data backfill request. This means you would have to manually transfer any historical data.
Since the business teams that need this data are not very tech-savvy, using this approach would necessarily mean that a company would need to invest tech bandwidth to move data. This is an expensive affair.
While transferring data, you need to remember that BigQuery doesn’t allow joining datasets saved in different location servers later. So, always create datasets in the same locations across your project. Hence, you need to be careful initially while setting up as there’s no option to change the location later.
Say you want to convert the timestamp in the data from UTC to PST, such modifications are not supported on the BigQuery Transfer service.
BigQuery transfer service can only bring data from Google products into BigQuery. In the future, in case you want to bring data from other sources such as Salesforce, Mailchimp, Intercom, and more, you would need to use another service.
What can you achieve by replicating data from Google Ads to BigQuery?
Here’s a little something for the data analyst on your team. We’ve mentioned a few core insights you could get by replicating data from Google Ads to BigQuery, does your use case make the list?
Know your customer: Get a unified view of your customer journey by combing data from all your channels and user touchpoints. Easily visualize each stage of your sales funnel and quickly derive actionable insights.
Supercharge your conversion rates: Leverage analysis-ready impressions, website visits, clicks data from multiple sources in a single place. Understand what content works best for you and double down on it to increase conversions.
Boost Marketing ROI: With detailed campaign reports at your grasp in near-real time, reallocate your budget to the most effective Ad strategy.
Conclusion
This blog talks about the different methods you can use to establish a connection in a seamless fashion: using BigQuery Data Transfer Service and a third-party tool, LIKE.TG .
Apart from providing data integration in Google Ads for free, LIKE.TG enables you to move data from a variety of data sources (Databases, Cloud Applications, SDKs, and more). These include products from both within and outside of the Google Suite.
Share your experience of replicating data! Let us know in the comments section below!
Salesforce to PostgreSQL: 2 Easy Methods
Even though Salesforce provides an analytics suite along with its offerings, most organizations will need to combine their customer data from Salesforce to data elements from various internal and external sources for decision making. This can only be done by importing Salesforce data into a data warehouse or database. The Salesforce Postgres integration is a powerful way to store and manage your data in an effective manner. Other than this, Salesforce Postgres sync is another way to store and manage data by extracting and transforming it. In this post, we will look at the steps involved in loading data from Salesforce to PostgreSQL.
Methods to Connect Salesforce to PostgreSQL
Here are the methods you can use to set up a connection from Salesforce to PostgreSQL in a seamless fashion as you will see in the sections below.
Reliably integrate data with LIKE.TG ’s Fully Automated No Code Data Pipeline
Given how fast API endpoints etc can change, creating and managing these pipelines can be a soul-sucking exercise. LIKE.TG ’s no-code data pipeline platform lets you connect over 150+ sources in a matter of minutes to deliver data in near real-time to your warehouse. It also has in-built transformation capabilities and an intuitive UI.
All of this combined with transparent pricing and 24×7 support makes us the most loved data pipeline software in terms of user reviews. Take our 14-day free trial to experience a better way to manage data pipelines.
Get started for Free with LIKE.TG !
Method 1: Using LIKE.TG Data to Connect Salesforce to PostgreSQL
An easier way to accomplish the same result is to use a code-free data pipeline platform likeLIKE.TG Datathat can implement sync in a couple of clicks.
LIKE.TG does all heavy lifting and masks all the data migration complexities to securely and reliably deliver the data from Salesforce into your PostgreSQL database in real-time and for free. By providing analysis-ready data in PostgreSQL, LIKE.TG helps you stop worrying about your data and start uncovering insights in real time.
Sign up here for a 14-day Free Trial!
With LIKE.TG , you could move data from Salesforce to PostgreSQL in just 2 steps:
Step 1: Connect LIKE.TG to Salesforce by entering the Pipeline Name.
Step 2: Load data from Salesforce to PostgreSQL by providing your Postgresql databases credentials like Database Host, Port, Username, Password, Schema, and Name along with the destination name.
Check out what makes LIKE.TG amazing:
Data Transformation: It provides a simple interface to perfect, modify, and enrich the data you want to transfer.
Schema Management: LIKE.TG can automatically detect the schema of the incoming data and maps it to the destination schema.
Incremental Data Load: LIKE.TG allows the transfer of data that has been modified in real-time. This ensures efficient utilization of bandwidth on both ends.
Method 2: Using Custom ETL Scripts to Connect Salesforce to PostgreSQL
The best way to interact with Salesforce is to use the different APIs provided by Salesforce itself. It also provides some utilities to deal with the data. You can use these APIs for Salesforce PostgreSQL integration. The following section attempts to provide an overview of these APIs and utilities.
Salesforce REST APIs: Salesforce REST APIs are a set of web services that help to insert/delete, update and query Salesforce objects. To implement a custom application using Salesforce in mobile or web ecosystem, these REST APIs are the preferred method.
Salesforce SOAP APIs: SOAP APIs can establish formal contracts of API behaviour through the use of WSDL. Typically Salesforce SOAP APIs are when there is a requirement for stateful APS or in case of strict transactional reliability requirement. SOAP APIs are also sometimes used when the organization’s legacy applications mandate the protocol to be SOAP.
Salesforce BULK APIs: Salesforce BULK APIs are optimized for dealing with a large amount of data ranging up to GBs. These APIs can run in a batch mode and can work asynchronously. They provide facilities for checking the status of batch runs and retrieving the results as large text files. BULK APIs can insert, update, delete or query records just like the other two types of APIs.
Salesforce Bulk APIs have two versions – Bulk API and Bulk API 2.0. Bulk API 2.0 is a new and improved version of Bulk API, which includes its own interface. Both are still available to use having their own set of limits and features.
Both Salesforce Bulk APIs are based on REST principles. They are optimized for working with large sets of data. Any data operation that includes more than 2,000 records is suitable for Bulk API 2.0 to successfully prepare, execute, and manage an asynchronous workflow that uses the Bulk framework. Jobs with less than 2,000 records should involve “bulkified” synchronous calls in REST (for example, Composite) or SOAP.
Using Bulk API 2.0 or Bulk API requires basic knowledge of software development, web services, and the Salesforce user interface. Because both Bulk APIs are asynchronous, Salesforce doesn’t guarantee a service level agreement.
Salesforce Data Loader: Data Loader is a Salesforce utility that can be installed on the desktop computer. It has functionalities to query and export the data to CSV files. Internally this is accomplished using the bulk APIs.
Salesforce Sandbox: A Salesforce Sandbox is a test environment that provides a way to copy and create metadata from your production instance. It is a separate environment where you can test with data (Salesforce records), including Accounts, Contacts, and Leads.It is one of the best practices to configure and test in a sandbox prior to making any live changes. This ensures that any development does not create disruptions in your live environment and is rolled out after it has been thoroughly tested. The data that is available to you is dependent on the sandbox type. There are multiple types, and each has different considerations. Some sandbox types support or require a sandbox template.
Salesforce Production: The production Environment in Salesforce is another type of environment available for storing the most recent data used actively for running your business. Many of the production environments in use today are Salesforce CRM customers that purchased group, professional, enterprise, or unlimited editions. Using the production environment in Salesforce offers several significant benefits, as it serves as the primary workspace for live business operations.
Here are the steps involved in using Custom ETL Scripts to connect Salesforce to PostgreSQL:
Step 1: Log In to Salesforce
Step 2: Create a Bulk API Job
Step 3: Create SQL Query to Pull Data
Step 4: Close the Bulk API Job
Step 5: Access the Resulting API
Step 6: Retrieve Results
Step 7: Load Data to PostgreSQL
Step 1: Log In to Salesforce
Login to Salesforce using the SOAP API and get the session id. For logging in first create an XML file named login.txt in the below format.
<?xml version="1.0" encoding="utf-8" ?>
<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Body>
<n1:login xmlns:n1="urn:partner.soap.sforce.com">
<n1:username>username</n1:username>
<n1:password>password</n1:password>
</n1:login>
</env:Body>
</env:Envelope>
Execute the below command to login
curl https://login.Salesforce.com/services/Soap/u/47.0 -H "Content-Type: text/xml; charset=UTF-8" -H
"SOAPAction: login" -d @login.txt
From the result XML, note the session id. We will need the session id for the later requests.
Step 2: Create a Bulk API Job
Create a BULK API job. For creating a job, a text file with details of the objects that are to be accessed is needed. Create the text file using the below template.
<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<operation>insert</operation>
<object>Contact</object>
<contentType>CSV</contentType>
</jobInfo>
We are attempting to pull data from the object Contact in this exercise.
Execute the below command after creating the job.txt
curl https://instance.Salesforce.com/services/async/47.0/job -H "X-SFDC-Session: sessionId" -H
"Content-Type: application/xml; charset=UTF-8" -d @job.txt
From the result, note the job id. This job-id will be used to form the URL for subsequent requests. Please note the URL will change according to the URL of the user’s Salesforce organization.
Step 3: Create SQL Query to Pull Data
Create the SQL query to pull the data and use it with CURL as given below.
curl https://instance_name—api.Salesforce.com/services/async/APIversion/job/jobid/batch
-H "X-SFDC-Session: sessionId" -H "Content-Type: text/csv;
SELECT name,desc from Contact
Step 4: Close the Bulk API Job
The next step is to close the job. This requires a text file with details of the job status change. Create it as below with the name close_job.txt.
<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<state>Closed</state>
</jobInfo>
Use the file with the below command.
curl https://instance.Salesforce.com/services/async/47.0/job/jobId -H "X-SFDC-Session: sessionId" -H
"Content-Type: application/xml; charset=UTF-8" -d @close_job.txt
Step 5: Access the Resulting API
Access the resulting API and fetch the result is of the batch.
curl -H "X-SFDC-Session: sessionId" https://instance.Salesforce.com/services/async/47.0/job/jobId/batch/batchId/result
Step 6: Retrieve Results
Retrieve the actual results using the result id that was fetched from the above step.
curl -H "X-SFDC-Session: sessionId"
https://instance.Salesforce.com/services/async/47.0/job/jobId/batch/batchId/result/resultId
The output will be a CSV file with the required rows of data. Save it as Contacts.csv in your local filesystem.
Step 7: Load Data to PostgreSQL
Load data to Postgres using the COPY command. Assuming the table is already created this can be done by executing the below command.
COPY Contacts(name,desc,)
FROM 'contacts.csv' DELIMITER ',' CSV HEADER;
An alternative to using the above sequence of API calls is to use the Data Loader utility to query the data and export it to CSV. But in case you need to do this programmatically, Data Loader utility will be of little help.
Limitations of using Custom ETL Scripts to Connect Salesforce to PostgreSQL
As evident from the above steps, loading data through the manual method contains a significant number of steps that could be overwhelming if you are looking to do this on a regular basis. You would need to configure additional scripts in case you need to bring data into real-time.
It is time-consuming and requires prior knowledge of coding, understanding APIs and configuring data mapping.
This method is not suitable for bulk data movement, leading to slow performance, especially for large datasets.
Conclusion
This blog talks about the different methods you can use to set up a connection from Salesforce to PostgreSQL in a seamless fashion. If you wants to know about PostgreSQL, then read this article: Postgres to Snowflake.
LIKE.TG is the only real-time ELT No-code Data Pipeline platform that cost-effectively automates data pipelines that are flexible to your needs. LIKE.TG handles everything from schema management to data flow monitoring data rids you of any maintenance overhead. In addition to Salesforce, you can bring data from 150s of different sources into PostgreSQL in real-time, ensuring that all your data is available for analysis with you.
Visit our Website to Explore LIKE.TG
Want to take LIKE.TG for a spin? Sign Up for a 14-day free trial and experience the feature-rich LIKE.TG suite first hand. You can also have a look at the unbeatable pricing that will help you choose the right plan for your business needs.
What are your thoughts on the two approaches to move data from Salesforce to PostgreSQL? Let us know in the comments.
How to Integrate Salesforce to Snowflake: 3 Easy Methods
Salesforce is an important CRM system and it acts as one of the basic source systems to integrate while building a Data Warehouse or a system for Analytics. Snowflake is a Software as a Service (SaaS) that provides Data Warehouse on Cloud-ready to use and has enough connectivity options to connect any reporting suite using JDBC or provided libraries.This article uses APIs, UNIX commands or tools, and Snowflake’s web client that will be used to set up this data ingestion from Salesforce to Snowflake. It also focuses on high volume data and performance and these steps can be used to load millions of records from Salesforce to Snowflake.
What is Salesforce
Image Source
Salesforce is a leading Cloud-based CRM platform. As a Platform as a Service (Paas), Salesforce is known for its CRM applications for Sales, Marketing, Service, Community, Analytics etc. It also is highly Scalable and Flexible. As Salesforce contains CRM data including Sales, it is one of the important sources for Data Ingestion into Analytical tools or Databases like Snowflake.
What is Snowflake
Image Source
Snowflake is a fully relational ANSI SQL Data Warehouse provided as a Software-as-a-Service (SaaS). It provides a Cloud Data Warehouse ready to use, with Zero Management or Administration. It uses Cloud-based persistent Storage and Virtual Compute instances for computation purposes.
Key features of Snowflake include Time Travel, Fail-Safe, Web-based GUI client for administration and querying, SnowSQL, and an extensive set of connectors or drivers for major programming languages.
Methods to move data from Salesforce to Snowflake
Method 1: Easily Move Data from Salesforce to Snowflake using LIKE.TG
Method 2: Move Data From Salesforce to Snowflake using Bulk API
Method 3: Load Data from Salesforce to Snowflake using Snowflake Output Connection (Beta)
Method 1: Easily Move Data from Salesforce to Snowflake using LIKE.TG
LIKE.TG is fully managed and completely automates the process of not only loading data from your desired source but also enriching the data and transforming it into an analysis-ready form without having to write a single line of code. Its fault-tolerant architecture ensures that the data is handled in a secure, consistent manner with zero data loss.
It is that simple. While you relax, LIKE.TG will take care of fetching the data from data sources like Salesforce, etc., and sending it to your destination warehouse for free.
Get started for Free with LIKE.TG !
Here are the steps involved in moving the data from Salesforce to Snowflake:
Step 1: Configure your Salesforce Source
Authenticate and configure your Salesforce data sourceas shown in the below image. To learn more about this step, visithere.
In the Configure Salesforce as Source Page, you can enter details such as your pipeline name, authorized user account, etc.
In the Historical Sync Duration, enter the duration for which you want to ingest the existing data from the Source. By default, it ingests the data for 3 months. You can select All Available Data, enabling you to ingest data since January 01, 1970, in your Salesforce account.
Step 2: Configure Snowflake Destination
Configure the Snowflake destination by providing the details like Destination Name, Account Name, Account Region, Database User, Database Password, Database Schema, and Database Name to move data from Salesforce to Snowflake.
In addition to this, LIKE.TG lets you bring data from 150+ Data Sources (40+ free sources) such as Cloud Apps, Databases, SDKs, and more. You can explore the complete list here.
LIKE.TG will now take care of all the heavy-weight lifting to move data from Salesforce to Snowflake. Here are some of the benefits of LIKE.TG :
In-built Transformations – Format your data on the fly with LIKE.TG ’s preload transformations using either the drag-and-drop interface, or our nifty python interface. Generate analysis-ready data in your warehouse using LIKE.TG ’s Postload Transformation
Near Real-Time Replication – Get access to near real-time replication for all database sources with log based replication. For SaaS applications, near real time replication is subject to API limits.
Auto-Schema Management – Correcting improper schema after the data is loaded into your warehouse is challenging. LIKE.TG automatically maps source schema with destination warehouse so that you don’t face the pain of schema errors.
Transparent Pricing – Say goodbye to complex and hidden pricing models. LIKE.TG ’s Transparent Pricing brings complete visibility to your ELT spend. Choose a plan based on your business needs. Stay in control with spend alerts and configurable credit limits for unforeseen spikes in data flow.
Security – Discover peace with end-to-end encryption and compliance with all major security certifications including HIPAA, GDPR, SOC-2.
Get started for Free with LIKE.TG !
Method 2: Move Data From Salesforce to Snowflake using Bulk API
What is Salesforce DATA APIs
As, we will be loading data from Salesforce to Snowflake, extracting data out from Salesforce is the initial step. Salesforce provides various general-purpose APIs that can be used to access Salesforce data, general-purpose APIs provided by Salesforce:
REST API
SOAP API
Bulk API
Streaming API
Along with these Salesforce provides various other specific purpose APIs such as Apex API, Chatter API, Metadata API, etc. which are beyond the scope of this post.
The following section gives a high-level overview of general-purpose APIs:
Synchronous API: Synchronous request blocks the application/client until the operation is completed and a response is received.
Asynchronous API: An Asynchronous API request doesn’t block the application/client making the request. In Salesforce this API type can be used to process/query a large amount of data, as Salesforce processes the batches/jobs at the background in Asynchronous calls.
Understanding the difference between Salesforce APIs is important, as depending on the use case we can choose the best of the available options for loading data from Salesforce to Snowflake.
APIs will be enabled by default for the Salesforce Enterprise edition, if not we can create a developer account and get the token required to access API.In this post, we will be using Bulk API to access and load the data from Salesforce to Snowflake.
The process flow for querying salesforce data using Bulk API:
The steps are given below, each one of them explained in detail to get data from Salesforce to Snowflake using Bulk API on a Unix-based machine.
Step 1: Log in to Salesforce API
Bulk API uses SOAP API for login as Bulk API doesn’t provide login operation.
Save the below XML as login.xml, and replace username and password with your respective salesforce account username and password, which will be a concatenation of the account password and access token.
<?xml version="1.0" encoding="utf-8" ?>
<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Body>
<n1:login xmlns:n1="urn:partner.soap.sforce.com">
<n1:username>username</n1:username>
<n1:password>password</n1:password>
</n1:login>
</env:Body>
</env:Envelope>
Using a Terminal, execute the following command:
curl <URL> -H "Content-Type: text/xml;
charset=UTF-8" -H "SOAPAction: login" -d @login.xml > login_response.xml
Above command if executed successfully will return an XML loginResponse with <sessionId> and <serverUrl> which will be used in subsequent API calls to download data.
login_response.xml will look as shown below:
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns="urn:partner.soap.sforce.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<loginResponse>
<result>
<metadataServerUrl><URL>
<passwordExpired>false</passwordExpired>
<sandbox>false</sandbox>
<serverUrl><URL>
<sessionId>00Dj00001234ABCD5!AQcAQBgaabcded12XS7C6i3FNE0TMf6EBwOasndsT4O</sessionId>
<userId>0010a00000ABCDefgh</userId>
<userInfo>
<currencySymbol>$</currencySymbol>
<organizationId>00XYZABCDEF123</organizationId>
<organizationName>ABCDEFGH</organizationName>
<sessionSecondsValid>43200</sessionSecondsValid>
<userDefaultCurrencyIsoCode xsi:nil="true"/>
<userEmail>user@organization</userEmail>
<userFullName>USERNAME</userFullName>
<userLanguage>en_US</userLanguage>
<userName>user@organization</userName>
<userTimeZone>America/Los_Angeles</userTimeZone>
</userInfo>
</result>
</loginResponse>
</soapenv:Body>
</soapenv:Envelope>
Using the above XML, we need to initialize three variables: serverUrl, sessionId, and instance.The first two variables are available in the response XML, the instance is the first part of the hostname in serverUrl.
The shell script snippet given below can extract these three variables from the login_response.xml file:
sessionId=$(xmllint --xpath
"/*[name()='soapenv:Envelope']/*[name()='soapenv:Body']/*[name()='loginResponse']/*
[name()='result']/*[name()='sessionId']/text()" login_response.xml)
serverUrl=$(xmllint --xpath
"/*[name()='soapenv:Envelope']/*[name()='soapenv:Body']/*[name()='loginResponse']/*
[name()='result']/*[name()='serverUrl']/text()" login_response.xml)
instance=$(echo ${serverUrl/.salesforce.com*/} | sed 's|https(colon)//||')
sessionId = 00Dj00001234ABCD5!AQcAQBgaabcded12XS7C6i3FNE0TMf6EBwOasndsT4O
serverUrl = <URL>
instance = organization
Step 2: Create a Job
Save the given below XML as job_account.xml. The XML given below is used to download Account object data from Salesforce in JSON format. Edit the bold text to download different objects or to change content type as per the requirement i.e. to CSV or XML. We are using JSON here.
job_account.xml:
<?xml version="1.0" encoding="UTF-8"?>
<jobInfo
xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<operation>query</operation>
<object>Account</object>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>JSON</contentType>
</jobInfo>
Execute the command given below to create the job and get the response, from the XML response received (account_jobresponse.xml), we will extract the jobId variable.
curl -s -H "X-SFDC-Session: ${sessionId}" -H "Content-Type: application/xml; charset=UTF-8" -d
@job_account.xml https://${instance}.salesforce.com/services/async/41.0/job >
account_job_response.xml
jobId = $(xmllint --xpath "/*[name()='jobInfo']/*[name()='id']/text()" account_job_response.xml)
account_job_response.xml:
<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>1200a000001aABCD1</id>
<operation>query</operation>
<object>Account</object>
<createdById>00580000003KrL0AAK</createdById>
<createdDate>2018-05-22T06:09:45.000Z</createdDate>
<systemModstamp>2018-05-22T06:09:45.000Z</systemModstamp>
<state>Open</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>JSON</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>0</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>0</numberBatchesTotal>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>41.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</jobInfo>
jobId = 1200a000001aABCD1
Step 3: Add a Batch to the Job
The next step is to add a batch to the Job created in the previous step. A batch contains a SQL query used to get the data from SFDC.After submitting the batch, we will extract the batchId from the JSON response received.
uery = ‘select ID,NAME,PARENTID,PHONE,ACCOUNT_STATUS from ACCOUNT’
curl -d "${query}" -H "X-SFDC-Session: ${sessionId}" -H "Content-Type: application/json;
charset=UTF-8" https://${instance}.salesforce.com/services/async/41.0/job/${jobId}/batch |
python -m json.tool > account_batch_response.json
batchId = $(grep "id": $work_dir/job_responses/account_batch_response.json | awk -F':' '{print $2}' | tr -d ' ,"')
account_batch_response.json:
{
"apexProcessingTime": 0,
"apiActiveProcessingTime": 0,
"createdDate": "2018-11-30T06:52:22.000+0000",
"id": "1230a00000A1zABCDE",
"jobId": "1200a000001aABCD1",
"numberRecordsFailed": 0,
"numberRecordsProcessed": 0,
"state": "Queued",
"stateMessage": null,
"systemModstamp": "2018-11-30T06:52:22.000+0000",
"totalProcessingTime": 0
}
batchId = 1230a00000A1zABCDE
Step 4: Check The Batch Status
As Bulk API is an Asynchronous API, the batch will be run at the Salesforce end and the state will be changed to Completed or Failed once the results are ready to download. We need to repeatedly check for the batch status until the status changes either to Completed or Failed.
status=""
while [ ! "$status" == "Completed" || ! "$status" == "Failed" ]
do
sleep 10; #check status every 10 seconds
curl -H "X-SFDC-Session: ${sessionId}"
https://${instance}.salesforce.com/services/async/41.0/job/${jobId}/batch/${batchId} |
python -m json.tool > account_batchstatus_response.json
status=$(grep -i '"state":' account_batchstatus_response.json | awk -F':' '{print $2}' |
tr -d ' ,"')
done;
account_batchstatus_response.json:
{
"apexProcessingTime": 0,
"apiActiveProcessingTime": 0,
"createdDate": "2018-11-30T06:52:22.000+0000",
"id": "7510a00000J6zNEAAZ",
"jobId": "7500a00000Igq5YAAR",
"numberRecordsFailed": 0,
"numberRecordsProcessed": 33917,
"state": "Completed",
"stateMessage": null,
"systemModstamp": "2018-11-30T06:52:53.000+0000",
"totalProcessingTime": 0
}
Step 5: Retrieve the Results
Once the state is updated to Completed, we can download the result dataset which will be in JSON format. The code snippet given below will extract the resultId from the JSON response and then will download the data using the resultId.
if [ "$status" == "Completed" ]; then
curl -H "X-SFDC-Session: ${sessionId}"
https(colon)//${instance}.salesforce(dot)com/services/async/41.0/job/${jobId}/batch/${batchId}/result |
python -m json.tool > account_result_response.json
resultId = $(grep '"' account_result_response.json | tr -d ' ,"')
curl -H "X-SFDC-Session: ${sessionId}"
https(colon)//${instance}.salesforce(dot)com/services/async/41.0/job/${jobId}/batch/${batchId}/result/
${resultId} > account.json
fi
account_result_response.json:
[
"7110x000008jb3a"
]
resultId = 7110x000008jb3a
Step 6: Close the Job
Once the results have been retrieved, we can close the Job. Save below XML as close-job.xml.
<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<state>Closed</state>
</jobInfo>
Use the code given below to close the job, by suffixing the jobId to the close-job request URL.
curl -s -H "X-SFDC-Session: ${sessionId}" -H "Content-Type: text/csv; charset=UTF-8" -d
@close-job.xml https(colon)//${instance}.salesforce(dot)com/services/async/41.0/job/${jobId}
After running all the above steps, we will have the account.json generated in the current working directory, which contains the account data downloaded from Salesforce in JSON format, which we will use to load data into Snowflake in next steps.
Downloaded data file:
$ cat ./account.json
[ {
"attributes" : {
"type" : "Account",
"url" : "/services/data/v41.0/sobjects/Account/2x234abcdedg5j"
},
"Id": "2x234abcdedg5j",
"Name": "Some User",
"ParentId": "2x234abcdedgha",
"Phone": 124567890,
"Account_Status": "Active"
}, {
"attributes" : {
"type" : "Account",
"url" : "/services/data/v41.0/sobjects/Account/1x234abcdedg5j"
},
"Id": "1x234abcdedg5j",
"Name": "Some OtherUser",
"ParentId": "1x234abcdedgha",
"Phone": null,
"Account_Status": "Active"
} ]
Step 7: Loading Data from Salesforce to Snowflake
Now that we have the JSON file downloaded from Salesforce, we can use it to load the data into a Snowflake table. File extracted from Salesforce has to be uploaded to Snowflake’s internal stage or to an external stage such as Microsoft Azure or AWS S3 location.Then we can load the Snowflake table using the created Snowflake Stage.
Step 8: Creating a Snowflake Stage
Stage in the Snowflake is a location where data files are stored, and that location is accessible by Snowflake; then, we can use the Stage name to access the file in Snowflake or to load the table.
We can create a new stage, by following below steps:
Login to the Snowflake Web Client UI.
Select the desired Database from the Databases tab.
Click on Stages tab
Click Create, Select desired location (Internal, Azure or S3)
Click Next
Fill the form that appears in the next window (given below).
Fill the details i.e. Stage name, Stage schema of Snowflake, Bucket URL and the required access keys to access the Stage location such as AWS keys to access AWS S3 bucket.
Click Finish.
Step 9: Creating Snowflake File Format
Once the stage is created, we are all set with the file location. The next step is to create the file format in Snowflake.File Format menu can be used to create the named file format, which can be used for bulk loading data into Snowflake using that file format.
As we have JSON format for the extracted Salesforce file, we will create the file format to read a JSON file.
Steps to create File Format:
Login to Snowflake Web Client UI.
Select the Databases tab.
Click the File Formats tab.
Click Create.
This will open a new window where we can mention the file format properties.
We have selected type as JSON, Schema as Format which stores all our File Formats. Also, we have selected Strip Outer Array option, this is required to strip the outer array (square brace that encloses entire JSON) that Salesforce adds to the JSON file.
File Format can also be created using SQL in Snowflake. Also, grants have to be given to allow other roles to access this format or stage we have created.
create or replace file format format.JSON_STRIP_OUTER
type = 'json'
field_delimiter = none
record_delimiter = '
'
STRIP_OUTER_ARRAY = TRUE;
grant USAGE on FILE FORMAT FORMAT.JSON_STRIP_OUTER to role developer_role;
Step 10: Loading Salesforce JSON Data to Snowflake Table
Now that we have created the required Stage and File Format of Snowflake, we can use them to bulk load the generated Salesforce JSON file and load data into Snowflake.
The advantage of JSON type in Snowflake:Snowflake can access the semi-structured type like JSON or XML as a schemaless object and can directly query/parse the required fields without loading them to a staging table. To know more about accessing semi-structured data in Snowflake, click here.
Step 11: Parsing JSON File in Snowflake
Using the PARSE_JSON function we can interpret the JSON in Snowflake, we can write a query as given below to parse the JSON file into a tabular format.Explicit type casting is required when using parse_json as it’ll always default to string.
SELECT
parse_json($1):Id::string,
parse_json($1):Name::string,
parse_json($1):ParentId::string,
parse_json($1):Phone::int,
parse_json($1):Account_Status::string
from @STAGE.salesforce_stage/account.json
( file_format=>('format.JSON_STRIP_OUTER')) t;
We will create a table in snowflake and use the above query to insert data into it. We are using Snowflake’s web client UI for running these queries.
Upload file to S3:
Table creation and insert query:
Data inserted into the Snowflake target table:
Hurray!! You have successfully loaded data from Salesforce to Snowflake.
Limitations of Loading Data from Salesforce to Snowflake using Bulk API
The maximum single file size is 1GB (Data that is more than 1GB, will be broken into multiple parts while retrieving results).
Bulk API query doesn’t support the following in SOQL query:COUNT, ROLLUP, SUM, GROUP BY CUBE, OFFSET, and Nested SOQL queries.
Bulk API doesn’t support base64 data type fields.
Method 3: Load Data from Salesforce to Snowflake using Snowflake Output Connection (Beta)
In June 2020, Snowflake and Salesforce launched native integration so that customers can move data from Salesforce to Snowflake. This can be analyzed using Salesforce’s Einstein Analytics or Tableau. This integration is available in open beta for Einstein Analytics customers.
Steps for Salesforce to Snowflake Integration
Enable the Snowflake Output Connector
Create the Output Connection
Configure the Connection Settings
Limitations of Loading Data from Salesforce to Snowflake using Snowflake Output Connection (Beta):
Snowflake Output Connection (Beta) is not a full ETL solution. It extracts and loads data but lacks the capacity for complex transformations.
It has limited scalability as there are limitations on the amount of data that can be transferred per object per hour. So, using Snowflake Output Connection as Salesforce to Snowflake connector is not very efficient.
Use Cases of Salesforce to Snowflake Integration
Real-Time Forecasting: When you connect Salesforce to Snowflake, it can be used in business for predicting end-of-the-month/ quarter/year forecasts that help in better decision-making. For example, you can use opportunity data from Salesforce with ERP and finance data from Snowflake to do so.
Performance Analytics: After you import data from Salesforce to Snowflake, you can analyze your marketing campaign’s performance. You can analyze conversion rates by merging click data from Salesforce with the finance data in Snowflake.
AI and Machine Learning: It can be used in business organizations to determine customer purchases of specific products. This can be done by combining Salesforce’s objects, such as website visits, with Snowflake’s POS and product category data.
Conclusion
This blog has covered all the steps required to extract data using Bulk API to move data from Salesforce to Snowflake. Additionally, an easier alternative using LIKE.TG has also been discussed to load data from Salesforce to Snowflake.
Visit our Website to Explore LIKE.TG
Want to take LIKE.TG for a spin? Sign Up for a 14-day free trial and experience the feature-rich LIKE.TG suite first hand. You can also have a look at the unbeatable pricing that will help you choose the right plan for your business needs.
Do leave a comment on your experience of replicating data from Salesforce to Snowflake and let us know what worked for you.
Google Analytics to Redshift: 2 Easy Methods
Many businesses worldwide use Google Analytics to collect valuable data on website traffic, signups, purchases, customer behavior, and more.Given the humongous amount of data that is present on Google Analytics, the need todeeplyanalyze it has also become acute.Naturally, organizations are turning towardsAmazon Redshift,one of thewidelyadopted Data Warehouses of today, to host this data and power the analysis. In this post, you will learn how to move data from Google Analytics to Redshift.Solve your data replication problems with LIKE.TG ’s reliable, no-code, automated pipelines with 150+ connectors.Get your free trial right away!
Methods to move data from Google Analytics to Redshift
There are two ways of loading your data from Google Analytics to Redshift:
Method 1: Using Hand Coding to Connect Google Analytics to Redshift
The activities of extracting data from Google Analytics, transforming that data to a usable form, and loading said data onto the target Redshift database would have to be carried out by custom scripts. The scripts would have to be written by members of your data management or business intelligence team. This data pipeline would then have to be managed and maintained over time.
Method 2: Using LIKE.TG Data to Connect Google Analytics to Redshift
Get Started with LIKE.TG for Free
Google Analytics comes free pre-built “out of the box” integration in LIKE.TG . You can easily move data with minimal setup, configuration from your end. Given LIKE.TG is a fully managed platform, no coding help or engineering bandwidth would be needed. LIKE.TG will ensure that your data is in the warehouse, ready for analysis in a matter of just a few minutes.
Sign up here for a 14-Day Free Trial
Methods to Connect Google Analytics to Redshift
Here are the methods you can use to connect Google Analytics to Redshift in a seamless fashion:
Method 1: Using Hand Coding to Connect Google Analytics to Redshift
Method 2: Using LIKE.TG Data to Connect Google Analytics to Redshift
Method 1: Using Hand Coding to Connect Google Analytics to Redshift
Pre-Migration Steps
Audit of Source Data: Before data migration begins, Google Analytics event samples shouldbe reviewedto ensure that the engineering team is completely aware of the schema.Business teams should coordinate with engineering toclearlydefine the data that needs tobe madeavailable.This will reduce the possibility of errors due to expectation mismatch between business and engineering teams
Backup of all Data: In the case of a failed replication, it is necessary to ensure that all your GA data maybe retrievedwith zero (or minimal) data loss. Also, plans shouldbe madeto ensure that sensitive datais protectedat all stages of the migration.
Manual Migration Steps
Step 1: Google Analytics provides an API, the Google Core Reporting API, that allows engineers to pull data.As such, most of the data thatis returnedis combinedinto a consolidated JSON format, which is incompatible with Redshift.
Step 2: The scripts would need to pull data from GA to a separate object, such as a CSV file.Meanwhile, to prepare the Redshift data warehouse, SQL commands mustbe runto create the necessary tables that define the database structure.TheaforementionedCSV file must thenbe loadedto a resource that Redshift can access.
Step 3: Amazon S3 cloud storage service is a good option. There is some amount of preparation involved in configuring S3 for this purpose. The CSV file must thenbe loadedinto the S3 that you configured. The COPY command mustbe invokedto load the data from the CSV file and into the Redshift database.
Step 4: Once the transfer is complete queries shouldbe runon thenewlypopulated database to test if the data is accurate and complete. This would re-ensure that the data load was successful.Havingbeen verified, a cron job should be set up to run with reasonable frequency, ensuring that the Redshift database stays up to date.Say you have different Google Analytics views set up for Website, App, etc. You would have to end up repeating the above process for each of these.
This concludes this method of manually coding the migration from Google Analytics to Redshift.
Limitations of using Hand Coding to Connect Google Analytics to Redshift
Manual coding for data replication between diverse technologies, while not impossible, does come with its fair share of challenges. Immediate consideration is one of time and cost.While the value of the information tobe gleanedfrom the data is definitely worth the cost of implementation, it is still a considerable cost.
The second concern of using Hand Coding to connect Google Analytics to Redshift is of accuracy and effectiveness. How good is the code? How many iterations will it take to get it right? Have effective testsbeen developedto ensure the accuracy of the migrated data?Have effective process management policiesbeen putin place to ensure correctness and consistency?
For instance, how would you identify if GA Reporting API JSON format hasbeen altered? The questions never end.
Should the data load processbe mismanaged, serious knock-on effects may result.These may include issues such as inaccurate databeing loadedin the form of redundancies and unknowns, missed deadlines, and exceeded budgets as a result ofmultipletests and script rewrites and more.
However, loading data from Google Analytics to Redshift may alsobe handled bymucheasilyin a hassle-free manner with platforms such as LIKE.TG .
Method 2: Using LIKE.TG Data to Connect Google Analytics to Redshift
LIKE.TG is fully managed and completely automates the process of not only loading data from your desired source but also enriching the data and transforming it into an analysis-ready form without having to write a single line of code. Its fault-tolerant architecture ensures that the data is handled in a secure, consistent manner with zero data loss.
LIKE.TG takes care of all your data preprocessing to set up migration from Google Analytics to Redshift and lets you focus on key business activities and draw a much powerful insight on how to generate more leads, retain customers, and take your business to new heights of profitability. It provides a consistent reliable solution to manage data in real-time and always have analysis-ready data in your desired destination.
Using LIKE.TG Data Integration Platform, you canseamlesslyreplicate data from Google Analytics to Redshift with 2 simple steps:
Step 1: Connect LIKE.TG to Google Analytics to set it up as your source by filling in the Pipeline Name, Account Name, Property Name, View Name, Metrics, Dimensions, and the Historical Import Duration.
Step 2: Load data from Google Analytics to Redshift by providing your Redshift databases credentials like Database Port, Username, Password, Name, Schema, and Cluster Identifier along with the Destination Name.
LIKE.TG takes up all the grind work ensuring that consistent and reliable data is available for Google Analytics to Redshift setup.
What Can You Achieve By Replicating Data from Google Analytics to Redshift?
Which Demographic contributes to the highest fraction of users of a particular Product Feature?
How are Paid Sessions and Goal Conversion Rates varying with Marketing Spend and Cash in-flow?
How to identify your most valuable customer segments?
Conclusion
This blog talks about the two methods you can use to connect Google Analytics to Redshift in a seamless fashion. Data and insights are the keys to success in business, and good insights can only come from correct, accurate, and relevant data.LIKE.TG , a 100% fault-tolerant, easy-to-use Data Pipeline Platform ensures that your valuable datais movedfrom Google Analytics to Redshift with care and precision.
VISIT OUR WEBSITE TO EXPLORE LIKE.TG
LIKE.TG Data provides its users with a simpler platform for integrating data from 150+ sources like Google Analytics. It is a No-code Data Pipeline that can help you combine data from multiple sources. You can use it to transfer data from multiple data sources into your Data Warehouses, Databases, Data Lakes, or a destination of your choice. It provides you with a consistent and reliable solution to managing data in real-time, ensuring that you always have Analysis-ready data in your desired destination.
SIGN UP for a 14-day free trial and experience a seamless data replication experience from Google Analytics to Redshift.
You can also have a look at the unbeatable pricing that will help you choose the right plan for your business needs.
How to Replicate Postgres to Snowflake: 4 Easy Steps
Snowflake’s architecture is defined newly from scratch, not an extension of the existing Big Data framework like Hadoop. It has a hybrid of the traditional shared-disk database and modern shared-nothing database architectures. Snowflake uses a central repository for persisted data that is accessible from all compute nodes in the data warehouse and processes queries using MPP (Massively Parallel Processing) compute clusters where each node in the cluster stores a portion of the data set. Snowflake processes using “Virtual Warehouses” which is an MPP compute cluster composed of multiple compute nodes. All components of Snowflake’s service run in a public Cloud-like AWS Redshift. This Data Warehouse is considered a cost-effective high performing analytical solution and is used by many organizations for critical workloads. In this post, we will discuss how to move real-time data from Postgres to Snowflake. So, read along and understand the steps to migrate data from Postgres to Snowflake.
Method 1: Use LIKE.TG ETL to Move Data From Postgres to Snowflake With Ease
UsingLIKE.TG , official Snowflake ETL partneryou can easily load data from Postgres to Snowflake with just 3 simple steps: Select your Source, Provide Credentials, and Load to Destination. LIKE.TG is the only real-time ELT No-code Data Pipeline platform that cost-effectively automates data pipelines that are flexible to your needs.
SIGN UP HERE FOR A 14-DAY FREE TRIAL
Step 1: Connect your PostgreSQL account to LIKE.TG ’s platform. LIKE.TG has an in-built PostgreSQL Integration that connects to your account within minutes.
Read the documents to know the detailed configuration steps for each PostgreSQL variant.
Step 2: Configure Snowflake as a Destination
Perform the following steps to configure Snowflake as a Destination in LIKE.TG :
By completing the above steps, you have successfully completed Postgres Snowflake integration.
To know more, check out:
PostgreSQL Source Connector
Snowflake Destination Connector
Check out some of the cool features of LIKE.TG :
Incremental Data Load: LIKE.TG allows the transfer of data that has been modified in real-time. This ensures efficient utilization of bandwidth on both ends.
Schema Management:LIKE.TG takes away the tedious task of schema management automatically detects the schema of incoming data and maps it to the destination schema.
Scalable Infrastructure:LIKE.TG has in-built integrations for150+ sourcesthat can help you scale your data infrastructure as required.
Method 2: Write a Custom Code to Move Data from Postgres to Snowflake
As in the above-shown figure, the four steps to replicate Postgres to Snowflake using custom code (Method 2) are as follows:
1. Extract Data from Postgres
COPY TO command is the most popular and efficient method to extract data from the Postgres table to a file. We can also use the pg_dump utility for the first time for full data extraction. We will have a look at both methods.
a. Extract Data Using the COPY Command
As mentioned above, COPY TO is the command used to move data between Postgres tables and standard file-system files. It copies an entire table or the results of a SELECT query to a file:
COPY table or sql_query TO out_file_name WITH options.
Example:
COPY employees TO 'C:tmpemployees_db.csv' WITH DELIMITER ',' CSV HEADER;
COPY (select * from contacts where age < 45) TO 'C:tmpyoung_contacts_db.csv' WITH DELIMITER ',' CSV HEADER;
Some frequently used options are:
FORMAT: The format of the data to be written are text, CSV, or binary (default is text).
ESCAPE: The character that should appear before a data character that matches the QUOTE value.
NULL: Represents the string that is a null value. The default is N (backslash-N) in text and an unquoted empty string in CSV.
ENCODING: Encoding of the output file. The default value is the current client encoding.
HEADER: If it is set, on the output file, the first line contains the column names from the table.
QUOTE: The quoting character to be used when data is quoted. The default is double-quote(“).
DELIMITER: The character that separates columns within each line of the file.
Next, we can have a look at how the COPY command can be used to extract data from multiple tables using a PL/PgSQL procedure. Here, the table named tables_to_extract contains details of tables to be exported.
CREATE OR REPLACE FUNCTION table_to_csv(path TEXT) RETURNS void AS $
declare
tables RECORD;
statement TEXT;
begin
FOR tables IN
SELECT (schema || '.' || table_name) AS table_with_schema
FROM tables_to_extract
LOOP
statement := 'COPY ' || tables.table_with_schema || ' TO ''' || path || '/' || tables.table_with_schema || '.csv' ||''' DELIMITER '';'' CSV HEADER';
EXECUTE statement;
END LOOP;
return;
end;
$ LANGUAGE plpgsql;
SELECT db_to_csv('/home/user/dir'/dump); -- This will create one csv file per table, in /home/user/dir/dump/
Sometimes you want to extract data incrementally. To do that, add more metadata like the timestamp of the last data extraction to the table tables_to_extract and use that information while creating the COPY command to extract data changed after that timestamp.
Consider you are using a column name last_pull_time corresponding to each table in the table tables_to_extract which stores the last successful data pull time. Each time data in the table which are modified after that timestamp has to be pulled. The body of the loop in procedure will change like this:
Here a dynamic SQL is created with a predicate comparing last_modified_time_stampfrom the table to be extracted and last_pull_time from table list_of_tables.
begin
FOR tables IN
SELECT (schema || '.' || table_name) AS table_with_schema, last_pull_time AS lt
FROM tables_to_extract
LOOP
statement := 'COPY (SELECT * FROM ' || tables.table_with_schema || ' WHERE last_modified_time_stamp > ' || last_pull_time ') TO ' '' || path || '/' || tables.table_with_schema || '.csv' ||''' DELIMITER '';'' CSV HEADER';
EXECUTE statement;
END LOOP;
return;
End;
b. Extract Data Using the pg_dump
As mentioned above, pg_dump is the utility for backing up a Postgres database or tables. It can be used to extract data from the tables also.
Example syntax:
pg_dump --column-inserts --data-only --table=<table> <database> > table_name.sql
Here output file table_name.sql will be in the form of INSERT statements like
INSERT INTO my_table (column1, column2, column3, ...)
VALUES (value1, value2, value3, ...);
This output has to be converted into a CSV file with the help of a small script in your favorites like Bash or Python.
2. Data Type Conversion from Postgres to Snowflake
There will be domain-specific logic to be applied while transferring data. Apart from that following things are to be noted while migrating data to avoid surprises.
Snowflake out-of-the-box supports a number of character sets including UTF-8. Check out the full list of encodings.
Unlike many other cloud analytical solutions, Snowflake supports SQL constraints like UNIQUE, PRIMARY KEY, FOREIGN KEY, NOT NULL constraints.
Snowflake by default has a rich set of data types. Below is the list of Snowflake data types and corresponding PostgreSQL types.
Snowflake allows almost all of the date/time formats. The format can be explicitly specified while loading data to the table using the File Format Option which we will discuss in detail later. The complete list of supported date/time formats can be found.
3. Stage Data Files
Before inserting data from Postgres to Snowflake table it needs to be uploaded to a temporary location which is called staging. There are two types of stages – internal and external.
a. Internal Stage
Each user and table is automatically allocated an internal stage for data files. It is also possible to create named internal stages.
The user named and accessed as ‘@~’.
The name of the table stage will be the same as that of the table.
The user or table stages can’t be altered or dropped.
The user or table stages do not support setting file format options.
As mentioned above, Internal Named Stages can be created by the user using the respective SQL statements. It provides a lot of flexibility while loading data by giving options to you to assign file format and other options to named stages.
While running DDL and commands like load data, SnowSQL is quite a handy CLI client which can be used to run those commands and is available in Linux/Mac/Windows. Read more about the tool and options.
Below are some example commands to create a stage:
Create a names stage:
create or replace stage my_postgres_stage
copy_options = (on_error='skip_file')
file_format = (type = 'CSV' field_delimiter = '|' skip_header = 1);
PUT command is used to stage data files to an internal stage. The syntax of the command is as given below :
PUT file://path_to_file/filename internal_stage_name
Example:
Upload a file named cnt_data.csv in the /tmp/postgres_data/data/ directory to an internal stage named postgres_stage.
put file:////tmp/postgres_data/data/cnt_data.csv @postgres_stage;
There are many useful options that can be helpful to improve performance like set parallelism while uploading the file, automatic compression of data files, etc. More information about those options is listed here.
b. External Stage
Amazon S3 and Microsoft Azure are external staging locations currently supported by Snowflake. We can create an external stage with any of those locations and load data to a Snowflake table.
To create an external stage on S3, IAM credentials have to be given. If the data is encrypted, then encryption keys should also be given.
create or replace stage postgre_ext_stage url='s3://snowflake/data/load/files/'
credentials=(aws_key_id='111a233b3c' aws_secret_key='abcd4kx5y6z');
encryption=(master_key = 'eSxX0jzYfIjkahsdkjamtnBKONDwOaO8=');
Data to the external stage can be uploaded using AWS or Azure web interfaces. For S3 you can upload using the AWS web console or any AWS SDK or third-party tools.
4. Copy Staged Files from Postgres to Snowflake Table
COPY INTO is the command used to load the contents of the staged file(s) from Postgres to the Snowflake table. To execute the command compute resources in the form of virtual warehouses are needed. You know more about it this command in the Snowflake ETL best practices.
Example:To load from a named internal stage
COPY INTO postgres_table
FROM @postgres_stage;
Loading from the external stage. Only one file is specified.
COPY INTO my_external_stage_table
FROM @postgres_ext_stage/tutorials/dataloading/contacts_ext.csv;
You can even copy directly from an external location:
COPY INTO postgres_table
FROM s3://mybucket/snow/data/files
credentials = (aws_key_id='$AWS_ACCESS_KEY_ID' aws_secret_key='$AWS_SECRET_ACCESS_KEY')
encryption = (master_key = 'eSxX0jzYfIdsdsdsamtnBKOSgPH5r4BDDwOaO8=')
file_format = (format_name = csv_format);
Files can be specified using patterns.
COPY INTO pattern_table
FROM @postgre_stage
file_format = (type = 'CSV')
pattern='.*/.*/.*[.]csv[.]gz';
Some common format options for CSV format supported in the COPY command:
COMPRESSION: Compression algorithm used for the input data files.
RECORD_DELIMITER: Records or lines separator characters in an input CSV file.
FIELD_DELIMITER: Character separating fields in the input file.
SKIP_HEADER: How many header lines are to be skipped.
DATE_FORMAT: To specify the date format.
TIME_FORMAT: To specify the time format.
Check out the full list of options. So, now you have finally loaded data from Postgres to Snowflake.
Update Snowflake Table
We have discussed how to extract data incrementally from PostgreSQL. Now we will look at how to migrate data from Postgres to Snowflake effectively.
As we discussed in the introduction, Snowflake is not based on any big data framework and does not have any limitations for row-level updates like in systems like Hive. It supports row-level updates making delta data migration much easier. Basic idea is to load incrementally extracted data into an intermediate table and modify records in the final table as per data in the intermediate table.
There are three popular methods to modify the final table once data is loaded into the intermediate table.
Update the rows in the final table and insert new rows from the intermediate table which are not in the final table.
UPDATE final_target_table t
SET t.value = s.value
FROM intermed_delta_table in
WHERE t.id = in.id;
INSERT INTO final_target_table (id, value)
SELECT id, value
FROM intermed_delta_table
WHERE NOT id IN (SELECT id FROM final_target_table);
Delete all records from the final table which are in the intermediate table. Then insert all rows from the intermediate table to the final table.
DELETE .final_target_table f
WHERE f.id IN (SELECT id from intermed_delta_table);
INSERT final_target_table (id, value)
SELECT id, value
FROM intermed_table;
MERGE statement: Inserts and updates can be done with a single MERGE statement and it can be used to apply changes in the intermediate table to the final table with one SQL statement.
MERGE into final_target_table t1 using intermed_delta_table t2 on t1.id = t2.id
WHEN matched then update set value = t2.value
WHEN not matched then INSERT (id, value) values (t2.id, t2.value);
Limitations of Using Custom Scripts for Postgres to Snowflake Connection
Here are some of the limitations associated with the use of custom scripts to connect Postgres to Snowflake.
Complexity
This method necessitates a solid grasp of PostgreSQL and Snowflake, including their respective data types, SQL syntax, and file-handling features. Some may find this to be a challenging learning curve because not all may have substantial familiarity with SQL or database management.
Time-consuming
It can take a while to write scripts and troubleshoot any problems that may occur, particularly with larger databases or more intricate data structures.
Error-prone
In human scripting, mistakes can happen. A small error in the script might result in inaccurate or corrupted data.
No Direct Support
You cannot contact a specialized support team in the event that you run into issues. For help with any problems, you’ll have to rely on the manuals, community forums, or internal knowledge.
Scalability Issues
The scripts may need to be modified or optimized to handle larger datasets as the volume of data increases. Without substantial efforts, this strategy might not scale effectively.
Inefficiency with Large Datasets
It might not be the most effective method to move big datasets by exporting them to a file and then importing them again, especially if network bandwidth is limited. Methods of direct data transmission could be quicker.
Postgres to Snowflake Data Replication Use Cases
Let’s look into some use cases of Postgres-Snowflake replication.
Transferring Postgres data to Snowflake
Are you feeling constrained by your Postgres configuration on-premises? Transfer your data to Snowflake’s endlessly scalable cloud platform with ease. Take advantage of easy performance enhancements, cost-effectiveness, and the capacity to manage large datasets.
Data Warehousing
Integrate data into Snowflake’s robust data warehouse from a variety of sources, including Postgres. This can help uncover hidden patterns, get a better understanding of your company, and strengthen strategic decision-making.
Advanced Analytics
Utilize Snowflake’s quick processing to run complex queries and find minute patterns in your Postgres data. This can help you stay ahead of the curve, produce smart reports, and gain deeper insights.
Artificial Intelligence and Machine Learning
Integrate your Postgres data seamlessly with Snowflake’s machine-learning environment. As a result, you can develop robust models, provide forecasts, and streamline processes to lead your company toward data-driven innovation.
Collaboration and Data Sharing
Colleagues and partners can securely access your Postgres data within the collaborative Snowflake environment. Hence, this integration helps promote smooth communication and expedite decision-making and group achievement.
Backup and Disaster Recovery
Transfer your Postgres data to the dependable and safe cloud environment offered by Snowflake. You can be assured that your data is constantly accessible and backed up, guaranteeing company continuity even in the event of unanticipated events.
Before wrapping up, let’s cover some basics.
What is Postgres?
Postgres is an open-source Relational Database Management System (RDBMS) developed at the University of California, Berkeley. It is widely known for reliability, feature robustness, and performance, and has been in use for over 20 years.
Postgres supports not only object-relational data but also supports complex structures and a wide variety of user-defined data types. This gives Postgres a definitive edge over other open-source SQL databases like MySQL, MariaDB, and Firebird.
Businesses rely on Postgres as their primary data storage/data warehouse for online, mobile, geospatial, and analytics applications. Postgres runs on all major operating systems, including Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solaris, Tru64), and Windows.
What is Snowflake?
Snowflake is a fully-managed Cloud-based Data Warehouse that helps businesses modernize their analytics strategy. Snowflake can query both structured and unstructured data using standard SQL. It delivers results of user queries spanning Gigabytes and Petabytes of data in seconds.
Snowflake automatically harnesses thousands of CPU cores to quickly execute queries for you. You can even query streaming data from your web, mobile apps, or IoT devices in real-time.
Snowflake comes with a web-based UI, a command-line tool, and APIs with client libraries that makes interacting with Snowflake pretty simple. Snowflake is secure and meets the most secure regulatory standards such as HIPAA, FedRAMP, and PCI DSS. When you store your data in Snowflake, your data is encrypted in transit and at rest by default and it’s automatically replicated, restored, and backed up to ensure business continuity.
Additional Resources for PostgreSQL Integrations and Migrations
PostgreSQL to Oracle Migration
Connect PostgreSQL to MongoDB
Connect PostgreSQL to Redshift
Integrate Postgresql to Databricks
Export a PostgreSQL Table to a CSV File
Conclusion
High-performing Data Warehouse solutions like Snowflake are getting more adoption and are becoming an integral part of a modern analytics pipeline. Migrating data from various data sources to this kind of cloud-native solution i.e from Postgres to Snowflake, requires expertise in the cloud, data security, and many other things like metadata management.
If you are looking for an ETL tool that facilitates the automatic migration and transformation of data from Postgres to Snowflake, then LIKE.TG is the right choice for you.LIKE.TG is a No-code Data Pipeline. It supports pre-built integration from150+ data sourcesat a reasonableprice. With LIKE.TG , you can perfect, modify and enrich your data conveniently.
visit our website to explore LIKE.TG [/LIKE.TG Button]
SIGN UP for a 14-day free trial and see the difference!
Have any further queries about PostgreSQL to Snowflake? Get in touch with us in the comments section below.
Decoding Google BigQuery Pricing
Google BigQuery is a fully managed data warehousing tool that abstracts you from any form of physical infrastructure so you can focus on tasks that matter to you. Hence, understanding Google BigQuery Pricing is pertinent if your business is to take full advantage of the Data Warehousing tool’s offering. However, the process of understanding Google BigQuery Pricing is not as simple as it may seem.The focus of this blog post will be to help you understand the Google BigQuery Pricing setup in great detail. This would, in turn, help you tailor your data budget to fit your business needs.
What is to Google BigQuery?
It is Google Cloud Platform’s enterprise data warehouse for analytics. Google BigQuery performs exceptionally even while analyzing huge amounts of data quickly meets your Big Data processing requirements with offerings such as exabyte-scale storage and petabyte-scale SQL queries. It is a serverless Software as a Service (SaaS) application that supports querying using ANSI SQL houses machine learning capabilities.
Some key features of Google BigQuery:
Scalability: Google BigQuery offers true scalability and consistent performance using its massively parallel computing and secure storage engine.
Data Ingestions Formats:Google BigQuery allows users to load data in various formats such as AVRO, CSV, JSON etc.
Built-in AI ML: It supports predictive analysis using its auto ML tables feature, a codeless interface that helps develop models having best in class accuracy. Google BigQuery ML is another feature that supports algorithms such as K means, Logistic Regression etc.
Parallel Processing: It uses a cloud-based parallel query processing engine that reads data from thousands of disks at the same time.
For further information on Google BigQuery, you can check theofficial site here.
What are the Factors that Affect Google BigQuery Pricing?
Google BigQuery uses a pay-as-you-go pricing model, and thereby charges only for the resources they use. There are mainly two factors that affect the cost incurred on the user, the data that they store and the amount of queries, users execute.
You can learn about the factors affecting Google BigQuery Pricing in the following sections:
Effect of Storage Cost on Google BigQuery Pricing
Effect of Query Cost on Google BigQuery Pricing
Effect of Storage Cost on Google BigQuery Pricing
Storage costs are based on the amount of data you store in BigQuery. Storage costs are usually incurred based on:
Active Storage Usage: Charges that are incurred monthly for data stored in BigQuery tables or partitions that have some changes effected in the last 90 days.
Long Time Storage Usage: A considerably lower charge incurred if you have not effected any changes on your BigQuery tables or partitions in the last 90 days.
BigQuery Storage API: Charges incur while suing the BigQuery storage APIs based on the size of the incoming data. Costs are calculated during the ReadRows streaming operations.
Streaming Usage: Google BigQuery charges users for every 200MB of streaming data they have ingested.
Data Size Calculation
Once your data is loaded into BigQuery you start incurring charges, the charge you incur is usually based on the amount of uncompressed data you stored in your BigQuery tables. The data size is calculated based on the data type of each individual columns of your tables. Data size is calculated in Gigabytes(GB) where 1GB is 230 bytes or Terabytes(TB) where 1TB is 240 bytes(1024 GBs). The table shows the various data sizes for each data type supported by BigQuery.
For example, let’s say you have a table called New_table saved on BigQuery. The table contains 2 columns with 100 rows, Column A and B. Say column A contains integers and column B contains DateTime data type. The total size of our table will be (100 rows x 8 bytes) for column A + (100 rows x 8 bytes) for column B which will give us 1600 bytes.
BigQuery Storage Pricing
Google BigQuery pricing for both storage use cases is explained below.
Active Storage Pricing:Google BigQuery pricing for active storage usage is as follows: Region (U.S Multi-region) Storage Type Pricing Details Active Storage $0.020 per GB BigQuery offers free tier storage for the first 10 GB of data stored each month So if we store a table of 100GB for 1 month the cost will be (100 x 0.020) = $2 and the cost for half a month will $1. Be sure to pay close attention to your regions. Storage costs vary from region to region. For example, the storage cost for using Mumbai (South East Asia) is $0.023 per GB, while the cost of using the EU(multi-region) is $0.020 per GB.
Long-term Storage Pricing: Google BigQuery pricing for long-term storage usage is as follows: Region (U.S Multi-Region) Storage Type Pricing Details Long-term storage $0.010 per GB BigQuery offers free tier storage for the first 10 GB of data stored each month The price for long term storage is considerably lower than that of the active storage and also varies from location to location. If you modify the data in your table, it 90 days timer reverts back to zero and starts all over again. Be sure to always keep that in mind.
BigQuery Storage API: Storage API charge is incurred during ReadRows streaming operations where the cost accrued is based on incoming data sizes, not on the bytes of the transmitted data. BigQuery Storage API has two tiers for pricing they are:
On-demand pricing: These charges are incurred per usage. The charges are: Pricing Details $1.10 per TB data read BigQuery Storage API is not included in the free tier
Flat rate pricing: This Google BigQuery pricing is available only to customers on flat-rate pricing. Customers on flat-rate pricing can read up to 300TB of data monthly at no cost. After exhausting 300TB free storage, the pricing reverts to on-demand.
Streaming Usage:Pricing for streaming data into BigQuery is as follows: Operation Pricing Details Ingesting streamed data $0.010 per 200MB Rows that are successfully ingested are what you are charged for
Effect of Query Cost on Google BigQuery Pricing
This involves costs incurred for running SQL commands, user-defined functions, Data Manipulation Language (DML) and Data Definition Language (DDL) statements. DML are SQL statements that allow you to update, insert, delete data from your BigQuery tables. DDL statements, on the other hand, allows you to create, modify BigQuery resources using standard SQL syntax.
BigQuery offers it’s customers two tiers of pricing from which they can choose from when running queries. The pricing tiers are:
On-demand Pricing: In this Google BigQuery pricing model you are charged for the number of bytes processed by your query, the charges are not affected by your data source be it on BigQuery or an external data source. You are not charged for queries that return an error and queries loaded from cache. On-demand pricing information is given below: Operation Pricing Details Queries (on demand) $5 per TB 1st 1TB per month is not billed Prices also vary from location to location.
Flat-rate Pricing: This Google BigQuery pricing model is for customers who prefer a stable monthly cost to fit their budget. Flat-rate pricing requires its users to purchase BigQuery Slots. All queries executed are charged to your monthly flat rate price. Flat rate pricing is only available for query costs and not storage costs. Flat rate pricing has two tiers available for selection
Monthly Flat-rate Pricing: The monthly flat-rate pricing is given below: Monthly Costs Number of Slots $ 10,000 500
Annual Flat-rate Pricing: In this Google BigQuery pricing model you buy slots for the whole year but you are billed monthly. Annual Flat-rate costs are quite lower than the monthly flat-rate pricing system. An illustration is given below: Monthly Costs Number of Slots $8,500 500
How to Check Google BigQuery Cost?
Now that you have a good idea of what different activities will cost you on BigQuery, the next step would be to estimate your Google BigQuery Pricing. For that operation, Google Cloud Platform(GCP) has a tool called the GCP Price Calculator.
In the next sections, let us look at how to estimate both Query and Storage Costs using the GCP Price Calculator:
Using the GCP Price Calculator to Estimate Query Cost
Using the GCP Price Calculator to Estimate Storage Cost
Using the GCP Price Calculator to Estimate Query Cost
On-demand Pricing:
For customers on the on-demand pricing model, the steps to estimate your query costs using the GCP Price calculator are given below:
Login to your BigQuery console home page.
Enter the query you want to run, the query validator(the green tick) will verify your query and give an estimate of the number of bytes processed. This estimate is what you will use to calculate your query cost in the GCP Price Calculator.
From the image above, we can see that our Query validator will process 3.1 GB of data when the query is run. This value would be used to calculate the query cost on GCP Price calculator.
The next action is to open the GCP Price calculator to calculate Google BigQuery pricing.
Select BigQuery as your product and choose on-demand as your mode of pricing.
Populate the on-screen form with all the required information, the image below gives an illustration.
From the image above the costs for running our query of 3.1GB is $0, this is because we have not exhausted our 1TB free tier for the month, once it is exhausted we will be charged accordingly.
Flat-rate Pricing:
The process for on-demand and flat-rate pricing is very similar to the above steps. The only difference is – when you are on the GCP Price Calculator page, you have to select the Flat-rate option and populate the form to view your charges.
How much does it Cost to Run a 12 GiB Query in BigQuery?
In this pricing model, you are charged for the number of bytes processed by your query. Also, you are not charged for queries that return an error and queries loaded from the cache.
BigQuery charges you $5 per TB of a query processed. However, 1st 1TB per month is not billed. So, to run a 12 GiB Query in BigQuery, you don’t need to pay anything if you have not exhausted the 1st TB of your month.
So, let’s assume you have exhausted the 1st TB of the month. Now, let’s use the GCP Price Calculator to estimate the cost of running a 12 GiB Query. Populate the on-screen form with all the required information and calculate the cost.
According to the GCP Calculator, it will cost you around $0.06 to process 12 GiB Query.
How much does it Cost to Run a 1TiB Query in BigQuery?
Assuming you have exhausted the 1st TB of the month. Now, let’s use the GCP Price Calculator to estimate the cost of running a 1 TiB Query. Populate the on-screen form with all the required information and calculate the cost.
According to the GCP Calculator, it will cost you $5 to process 1 TiB Query.
How much does it Cost to Run a 100 GiB Query in BigQuery?
Assuming you have exhausted the 1st TB of the month. Now, let’s use the GCP Price Calculator to estimate the cost of running a 100 GiB Query. Populate the on-screen form with all the required information and calculate the cost.
According to the GCP Calculator, it will cost you $0.49 to process 100 GiB Query.
Using the GCP Price Calculator to Estimate Storage Cost
The steps to estimating your storage cost with the GCP price calculator are as follows:
Access the GCP Price Calculator home page.
Select BigQuery as your product.
Click on the on-demand tab (BigQuery does not have storage option for Flat rate pricing).
Populate the on-screen form with your table details and size of the data you want to store either in MB, GB or TB. (Remember the first 10GB of storage on BigQuery is free)
Click add to estimate to view your final cost estimate.
BigQuery API Cost
The pricing model for the Storage Read API can be found in on-demand pricing. On-demand pricing is completely usage-based. Apart from this, BigQuery’s on-demand pricing plan also provides its customers with a supplementary tier of 300TB/month.
Although, you would be charged on a per-data-read basis on bytes from temporary tables. This is because they aren’t considered a component of the 300TB free tier. Even if a ReadRows function breaks down, you would have to pay for all the data read during a read session. If you cancel a ReadRows request before the completion of the stream, you will be billed for any data read prior to the cancellation.
BigQuery Custom Cost Control
If you dabble in various BigQuery users and projects, you can take care of expenses by setting a custom quote limit. This is defined as the quantity of query data that can be processed by users in a single day.
Personalized quotas set at the project level can constrict the amount of data that might be used within that project. Personalized User Quotas are assigned to service accounts or individual users within a project.
BigQuery Flex Slots
Google BigQuery Flex Slots were introduced by Google back in 2020. This pricing option lets users buy BigQuery slots for short amounts of time, beginning with 60-second intervals. Flex Slots are a splendid addition for users who want to quickly scale down or up while maintaining predictability of costs and control.
Flex Slots are perfect for organizations with business models that are subject to huge shifts in data capacity demands. Events like a Black Friday Shopping surge or a major app launch make perfect use cases. Right now, Flex Slots cost $0.04/slot, per hour. It also provides you with the option to cancel at any time after 60 seconds. This means you will only be billed for the duration of the Flex Slots Deployment.
How to Stream Data into BigQuery without Incurring a Cost?
Loading data into BigQuery is entirely free, but streaming data into BigQuery adds a cost. Hence, it is better to load data than to stream it, unless quick access to your data is needed.
Tips for Optimizing your BigQuery Cost
The following are some best practices that will prevent you from incurring unnecessary costs when using BigQuery:
Avoid using SELECT *when running your queries, only query data that you need.
Sample your data using the preview function on BigQuery, running a query just to sample your data is an unnecessary cost.
Always check the prices of your query and storage activities on GCP Price Calculator before executing them.
Only use Streaming when you require your data readily available. Loading data in BigQuery is free.
If you are querying a large multi-stage data set, break your query into smaller bits this helps in reducing the amount of data that is read which in turn lowers cost.
Partition your data by date, this allows you to carry out queries on relevant sub-set of your data and in turn reduce your query cost.
With this, we can conclude the topic of BigQuery Pricing.
Conclusion
This write-up has exposed you to the various aspects of Google BigQueryPricing to help you optimize your experience when trying to make the most out of your data. You can now easily estimate the cost of your BigQuery operations with the methods mentioned in this write-up. In case you want to export data from a source of your choice into your desired Database/destination likeGoogle BigQuery, thenLIKE.TG Datais the right choice for you!
We are all ears to hear about any other questions you may have on Google BigQuery Pricing. Let us know your thoughts in the comments section below.
AppsFlyer to Redshift: 2 Easy Methods
AppsFlyer is an attribution platform that helps developers build their mobile apps. Moreover, it also helps them market their apps, track their Leads, analyze their customer behavior and optimize their Sales accordingly.Amazon Redshift is a Cloud-based Data Warehousing Solution from Amazon Web Services (AWS). It helps you consolidate your data from multiple data sources into a centralized location for easy access and analytical purposes. It extracts the data from your data sources, transforms it into a specific format, and then loads it into Redshift Data Warehouse.
Whether you are looking to load data from AppsFlyer to Redshift for in-depth analysis or you are looking to simply backup Appsflyer data to Redshift, this post can help you out. This blog highlights the steps and broad approaches required to load data from Appsflyer to Redshift.
Introduction to AppsFlyer
AppsFlyer is an attribution platform for mobile app marketers. It helps businesses understand the source of traffic and measure advertising. It provides a dashboard that analyses the users’ engagement with the app. That is, which users engage with the app, how they engage, and the revenue they generate.
For more information on AppsFlyer, click here.
Solve your data replication problems with LIKE.TG ’s reliable, no-code, automated pipelines with 150+ connectors.Get your free trial right away!
Introduction to Amazon Redshift
Amazon Redshift is a Data Warehouse built using MPP (Massively Parallel Processing) architecture. It forms part of the AWS Cloud Computing platform and is owned and maintained by AWS. It has the ability to handle large volumes of data sets and huge analytical workloads. The data is stored in a column-oriented DBMS principle which makes it different from other databases offered by Amazon.
Using Amazon Redshift SQL, you can query megabytes of structured or unstructured data and save the results in your S3 data lake using Apache Parquet format. This helps you to do further analysis using Amazon SageMaker, Amazon EMR, and Amazon Athena.
For more information on Amazon Redshift, click here.
Methodsto Load Data from AppsFlyer to Redshift
Method 1: Load Data from AppsFlyer to Redshift by Building Custom ETL Scripts
This approach would be a good way to go if you have decent engineering bandwidth allocated to the project. The broad steps would involve: Understanding the AppsFlyer data export APIs, building code to bring data out of AppsFlyer, and loading data into Redshift. Once set up, this infrastructure would also need to be monitored and maintained for accurate data to be available all the time.
Method 2: Load Data from AppsFlyer to Redshift using LIKE.TG Data
LIKE.TG comes with out-of-the-box integration with AppsFlyer (Free Data Source) and loads data to Amazon Redshift without having to write any code. LIKE.TG ’s ability to reliably load data in real-time combined with its ease of use makes it a great alternative to Method 1.
Sign up here for a 14-day Free Trial!
This blog outlines both of the above approaches. Thus, you will be able to analyze the pros and cons of each when deciding on a direction as per your use case.
Methodsto Load Data from AppsFlyer to Redshift
Broadly there are 2 methods to load data from AppsFlyer to Redshift:
Method 1: Load Data from AppsFlyer to Redshift by Building Custom ETL ScriptsMethod 2: Load Data from AppsFlyer to Redshift using LIKE.TG Data
Let’s walk through these methods one by one.
Method 1: Load Data from AppsFlyer to Redshift by Building Custom ETL Scripts
Follow the steps below to load data from AppsFlyer to Redshift by building custom ETL scripts:
Step 1: Getting Data from AppsflyerStep 2: Loading Data into Redshift
Step 1: Getting Data from Appsflyer
AppsFlyer supports a wide array of APIs that allow you to pull different data points both in raw (impressions, clicks, installs, etc.) and aggregated (aggregated impressions, clicks, or filtering by Media source, country, etc.) format. You can read more about them here. Before jumping on to implementing an API call, you would first need to understand the exact use case that you are catering to. The basis that, you will need to choose the API to implement.
Note that certain APIs would only be available to you based on your current plan with AppsFlyer.
For the scope of this blog, let us bring in data from PULL APIs. PULL APIs essentially allow the customers of AppsFlyer to get a CSV download of raw and aggregate data. You can read more about the PULL APIs here.
In order to bring data, you would need to make an API call describing the data points you need to be returned. The API call must include the authorization key of the user, as well as the date range for which the data needs to be extracted. More parameters might be added to request information like currency, source, and other specific fields.
A sample PULL API call would look like this:
https://hq.appsflyer.com/export/master_report/v4?api_token=[api_token]
app_id=[app_id]from=[from_date]to=[to_date]groupings=[list]kpis=[list]
As a response, a CSV file is returned from each successful API query. Next, you would need to import this data into Amazon Redshift.
Step 2: Loading Data into Redshift
As a first step, identify the columns you want to insert and use the CREATE TABLE Redshift command to create a table. All the CSV data will be stored in this table.
Loading data with the INSERT command is not the right choice because it inserts data row by row. Therefore, you would need to load data to Amazon S3 and use to COPY command to load it into Redshift.
In case you need this process to be done on a regular basis, the cron job should be set up to run with reasonable frequency, ensuring that the AppsFlyer data in the Redshift data warehouse stays up to date.
Limitations of Loading Data from AppsFlyer to Redshift Using Custom Code
Listed down are the limitations and challenges of loading data from AppsFlyer to Redshift using custom code:
Accessing Appsflyer Data in Real-Time: After you’ve successfully created a program that loads data to your warehouse, you will need to deal with the challenge of loading new or updated data. Replicating the data in real-time when a new or updated record is created slows the operation because it’s resource-intensive. To get new and updated data as it appears in the AppsFlyer, you will need to write additional code and build cron jobs to run this in a continuous loop.Infrastructure Maintenance: When moving data from AppsFlyer to Redshift, many things can go wrong. For example, AppsFlyer may update the APIs or sometimes the Redshift data warehouse might be unavailable. These issues can cause the data flow to stop, resulting in severe data loss. Hence, we would need to have a team that can continuously monitor and maintain the infrastructure.
Method 2: Load Data from AppsFlyer to Redshift using LIKE.TG Data
LIKE.TG Data, a No-code Data Pipeline helps to Load Data from any data source such as Databases, SaaS applications, Cloud Storage, SDKs, and Streaming Services and simplifies the ETL process. It supports 100+ data sources (including 40+ Free Data Sources) including AppsFlyer, etc., for free and is a 3-step process by just selecting the data source, providing valid credentials, and choosing the destination. LIKE.TG loads the data onto the desired Data Warehouse, enriches the data, and transforms it into an analysis-ready form without writing a single line of code.
Its completely automated pipeline offers data to be delivered in real-time without any loss from source to destination. Its fault-tolerant and scalable architecture ensure that the data is handled in a secure, consistent manner with zero data loss and supports different forms of data. The solutions provided are consistent and work with different Business Intelligence (BI) tools as well.
Get Started with LIKE.TG for free
LIKE.TG overcomes all the limitations mentioned. You move data in just two steps, no coding is required.
Authenticate and Connect Appsflyer Data Source as shown in the image below by entering the Pipeline Name, API Token, App ID, and Pull API Timezone.
Configure the Redshift Data Warehouse where you want to load the data as shown in the image below by entering the Destination Name and Database Cluster Identifier, User, Password, Port, Name, and Schema.
Benefits of Loading Data from AppsFlyer to Redshift using LIKE.TG Data
LIKE.TG platform allows you to seamlessly move data from AppsFlyer and numerous other free data sources to Redshift. Here are some more advantages:
Secure: LIKE.TG has a fault-tolerant architecture that ensures that the data is handled in a secure, consistent manner with zero data loss.Schema Management: LIKE.TG takes away the tedious task of schema management automatically detects the schema of incoming data and maps it to the destination schema.Minimal Learning: LIKE.TG , with its simple and interactive UI, is extremely simple for new customers to work on and perform operations.LIKE.TG Is Built To Scale: As the number of sources and the volume of your data grows, LIKE.TG scales horizontally, handling millions of records per minute with very little latency.Incremental Data Load: LIKE.TG allows the transfer of data that has been modified in real-time. This ensures efficient utilization of bandwidth on both ends.Live Support: The LIKE.TG team is available round the clock to extend exceptional support to its customers through chat, email, and support calls.Live Monitoring: LIKE.TG allows you to monitor the data flow and check where your data is at a particular point in time.
Sign up here for a 14-day Free Trial!
Conclusion
This article introduced you to AppsFlyer and Amazon Redshift. It provided you with 2 methods that you can use to load data from AppsFlyer to Redshift. The 1st method includes Manual Integration between AppsFlyer and Redshift while the 2nd method includes Automated Integration using LIKE.TG Data.
With the complexity involves in manual Integration, businesses are leaning more towards automated Integration. This is not only hassle-free but also easy to operate and does not require any technical proficiency. In such a case, LIKE.TG Data is the right choice for you! It will help simplify the Web Analysis process by setting up AppsFlyer Redshift Integration for free.
Visit our Website to Explore LIKE.TG
Want to take LIKE.TG for a spin? Sign Up for a 14-day free trial and experience the feature-rich LIKE.TG suite first hand. You can also have a look at the unbeatable pricing that will help you choose the right plan for your business needs.
What are your thoughts about moving data from AppsFlyer to Redshift? Let us know in the comments.
Redshift Pricing: A Comprehensive Guide
AWS Redshift is a pioneer in completely managed data warehouse services. With its ability to scale on-demand, a comprehensive Postgres-compatible querying engine, and multitudes of AWS tools to augment the core capabilities, Redshift provides everything a customer needs to use as the sole data warehouse solution. And with these many capabilities, one would expect Redshift pricing would fall too heavy, but it’s not the case.In fact, all of these features come at reasonable, competitive pricing.However, the process of understanding Redshift pricing is not straightforward. AWS offers a wide variety of pricing options to choose from, depending on your use case and budget constraints.
In this post, we will explore the different Redshift pricing options available. Additionally, we will also explore some of the best practices that can help you optimize your organization’s data warehousing costs, too.
What is Redshift
Amazon Redshift is a fully-managed petabyte-scale cloud-based data warehouse, designed to store large-scale data sets and perform insightful analysis on them in real-time.
It is highly column-oriented designed to connect with SQL-based clients and business intelligence tools, making data available to users in real time. Supporting PostgreSQL 8, Redshift delivers exceptional performance and efficient querying. Each Amazon Redshift data warehouse contains a collection of computing resources (nodes) organized in a cluster, each having an engine of its own and a database to it.
For further information on Amazon Redshift, you can check theofficial site here.
Amazon Redshift Pricing
Let’s learn about Amazon Redshift’s capabilities and pricing.
Free Tier: For new enterprises, the AWS free tier offers a two-month trial to run a single DC2. Largenode, which includes 750 hrs per month with 160 GB compressed solid-state drives.
On-Demand Pricing: When launching an Amazon Redshift cluster, users select a number of nodes and their instance type in a specific region to run their data warehouse. In on-demand pricing, a straightforward hourly rate is applied based on the chosen configuration, billed as long as the cluster is active, which is around $0.25 USD per hour.
Redshift Serverless Pricing: With Amazon Redshift Serverless, costs accumulate only when the data warehouse is active, measured in units of Redshift Processing Units (RPUs). Charges are on a per-second basis, including concurrency scaling and Amazon Redshift Spectrum, with their costs already incorporated.
Managed Storage Pricing: Amazon Redshift charges on the data stored in managed storage at a particular rate per GB-month. This usage is calculated hourly based on the total data volume, starting at $0.024 USD per GB with the RA3 node. The Managed Redshift storage cost can vary by AWS region.
Spectrum Pricing: Amazon Redshift Spectrum allows users to run SQL queries directly on data in S3 buckets. The pricing is calculated based on the number of bytes scanned, with pricing set at $5 USD per terabyte of data scanned.
Concurrency Scaling Pricing: Concurrency Scaling enables Redshift to scale to multiple concurrent users and queries. Users accrue a one-hour credit for every twenty-four hours their main cluster is live, with additional usage charged on a per-second, on-demand rate based on the main cluster’s node types.
Reserved Instance Pricing: Reserved instances, intended for stable production workloads, offer cost savings compared to on-demand clusters. Pricing for reserved instances can be paid all upfront, partially upfront, or monthly over a year with no upfront charges.
Read: Amazon Redshift Data Types – A Detailed Overview
Factors that affect Amazon Redshift Pricing
Amazon Redshift Pricing is broadly affected by four factors:
The node type that the customer chooses to build his cluster.
The region where the cluster is deployed.
Billing strategy – on-demand billing or a reservedpricingstrategy.
Use ofRedshiftSpectrum.
Let’s look into these Redshift billing and pricing factors in detail.
Effect of Node Type on Redshift Pricing
Effect of Regions on Redshift Pricing
On-demand vs Reserved Instance Pricing
Amazon Redshift Spectrum Pricing
Effect of Node Type on Redshift Pricing
Redshift follows a cluster-based architecture with multiple nodes allowing it to massively parallel process data. (You can read more on Redshift architecture here). This means Redshift performance is directly correlated to the specification and number of nodes that form the cluster. It offers multiple kinds of nodes from which the customers can choose based on the computing and storage requirements.
Dense compute nodes: These nodes are optimized for computing and offer SSDs up to 2.5 TB and physical memory up to 244 GB. Redshift pricing will also depend on the region in which your cluster will be located. The price of the lowest spec dc2.large instance varies from .25 to .37 $ per hour depending on the region. There is also a higher spec version available which is called dc2.8xlarge which can cost anywhere from 4.8 to 7 $ per hour depending on region.
Dense storage nodes: These nodes offer higher storage capacity per node, but the storage hardware will be HDDs.Dense storage nodes also allow two versions – a basic version called ds2.large which offers HDDs up to 2 TB and a higher spec version that offers HDDs up to 16 TB per node. Price can vary from .85 to 1.4 $ per hour for the basic version and 6 to 11 $ per hour for the ds2.8xlarge version.
As mentioned in the above sections, Redshift pricing varies on a wide range depending on the node types. One another critical constraint is that your cluster can be formed only using the same type of nodes. So you would need to find the most optimum node type based on specific use cases.
As a thumb rule, AWS itself recommends a dense compute type node for use cases with less than 500 GB of data. There is a possibility of using previous generation nodes for a further decrease in price, but we will not recommend them since they miss out on the critical elastic resize feature. This means scaling could go into hours when using such nodes.
Effect of Regions on Redshift Pricing
Since Redshift pricing varies, from costs for running their data centers in different parts of the world to the pricing of nodes depending on the region where the cluster is to be deployed.
Let’s deliberate on some of the factors that may affect the decision of which region to deploy the cluster.
While choosing regions, it may not be sensible to choose the regions with the cheapest price, because the data transfer time can vary according to the distance at which the clusters are located from their data source or targets. It is best to choose a location that is nearest to your data source.
In specific cases, this decision may be further complicated by the mandates to follow data storage compliance, which requires the data to be kept in specific country boundaries.
AWS deploys its features in different regions in a phased manner. While choosing regions, it would be worthwhile to ensure that the AWS features that you intend to use outside of Redshift are available in your preferred region.
In general, US-based regions offer the cheapest price while Asia-based regions are the most expensive ones.
On-demand vs Reserved Instance Pricing
Amazon offers discounts on Redshift pricing based on its usual rates if the customer is able to commit to a longer duration of using the clusters. Usually, this duration is in terms of years. Amazon claims a saving of up to 75 percent if a customer uses reserved instance pricing.
When you choose reserved pricing, irrespective of whether a cluster is active or not for the particular time period, you still have to pay the predefined amount. Redshift currently offers three types of reserved pricing strategies:
No upfront: This is offered only for a one-year duration. The customer gets a 20 percent discount over existing on-demand prices.
Partial upfront: The customer needs to pay half of the money up front and the rest in monthly installments. Amazon assures up to 41 % discount on on-demand prices for one year and 71% over 3 years. This can be purchased for a one to three-year duration.
Full payment upfront: Amazon claims a 42 % discount over a year period and a 75 % discount over three years if the customer chooses to go with this option.
Even though the on-demand strategy offers the most flexibility — in terms of Redshift pricing — a customer may be able to save quite a lot of money if they are sure that the cluster will be engaged over a longer period of time.
Redshift’s concurrency scaling is charged at on-demand rates on a per-second basis for every transient cluster that is used. AWS provides 1 hour of free credit for concurrency scaling for every 24 hours that a cluster remains active. The free credit is calculated on a per-hour basis.
Amazon Redshift Spectrum Pricing
Redshift Spectrum is a querying engine service offered by AWS allowing customers to use only the computing capability of Redshift clusters on data available in S3 in different formats. This feature enables customers to add external tables to Redshift clusters and run complex read queries over them without actually loading or copying data to Redshift.
Redshift spectrum cost is based on the data scanned by each query, to know in detail, read further.
Pricing of Redshift Spectrum is based on the amount of data scanned by each query and is fixed at 5$ per TB of data scanned. The cost is calculated in terms of the nearest megabyte with each megabyte costing .05 $. There is a minimum limit of 10 MB per query. Only the read queries are charged and the table creation and other DDL queries are not charged.
Read: Amazon Redshift vs Redshift Spectrum: 6 Comprehensive Differences
Redshift Pricing for Additional Features
Redshift offers a variety of optional functionalities if you have more complex requirements. Here are a handful of the most commonly used Redshift settings to consider adding to your configuration. They may be a little more expensive, but they could save you time, hassle, and unforeseen budget overruns.
1) RedShift Spectrum and Federated Query
One of the most inconvenient aspects of creating a Data Warehouse is that you must import all of the data you intend to utilize, even if you will only use it seldom. However, if you keep a lot of your data on AWS, Redshift can query it without having to import it:
Redshift Spectrum: Redshift may query data in Amazon S3 for a fee of $5 per terabyte of data scanned, plus certain additional fees (for example, when you make a request against one of your S3 buckets).
Federated Query: Redshift can query data from Amazon RDS and Aurora PostgreSQL databases via federated queries. Beyond the fees for using Redshift and these databases, there are no additional charges for using Federated Query.
2) Concurrency Scaling
Concurrency Scaling allows you to build up your data warehouse to automatically grab extra resources as your needs spike, and then release them when they are no longer required.
Concurrency Scaling price on AWS Redshift data warehouse is a little complicated. Every day of typical usage awards each Amazon Redshift cluster one hour of free Concurrency Scaling, and each cluster can accumulate up to 30 hours of free Concurrency Scaling usage. You’ll be charged for the additional cluster(s) for every second you utilize them if you go over your free credits.
3) Redshift Backups
Your data warehouse is automatically backed up by Amazon Redshift for free. However, taking a snapshot of your data at a specific point in time can be valuable at times. This additional backup storage will be charged at usual Amazon S3 prices for clusters using RA3 nodes. Any manual backup storage that takes up space beyond the amount specified in the rates for your DC nodes will be paid in clusters employing DC nodes.
4) Reserve Instance
Redshift offers Reserve Instances in addition to on-demand prices, which offer a significant reduction if you commit to a one- or three-year term. “Customers often purchase Reserved Instances after completing experiments and proofs-of-concept to validate production configurations,” according to the Amazon Redshift pricing page, which is a wise strategy to take with any long-term Data Warehouse contracts.
Tools for keeping your Redshift’s Spending Under Control
Since many aspects of AWS Redshift pricing are dynamic, there’s always the possibility that your expenses will increase. This is especially important if you want your Redshift Data Warehouse to be as self-service as feasible. If one department goes overboard in terms of how aggressively they attack the Data Warehouse, your budget could be blown.
Fortunately, Amazon has added a range of features and tools over the last year to help you put a lid on prices and spot surges in usage before they spiral out of control. Listed below are a few examples:
You can limit the use of Concurrency Scaling and Redshift Spectrum in a cluster on a daily, weekly, and/or monthly basis. And you can set it up so that when the cluster reaches those restrictions, it either disables the feature momentarily, issues an alarm, or logs the alert to a system table.
Redshift pricing now includes Query Monitoring, which makes it simple to see which queries are consuming the most CPU time. This enables you to address possible issues before they spiral out of control. For Example, rewriting a CPU-intensive query to make it more efficient.
Schemas, which are a way for constructing a collection of Database Objects, can have storage restrictions imposed. Yelp, for example, introduced the ‘tmp’ schema to allow staff to prototype Database tables. Yelp used to have a problem where staff experimentation would use up so much storage that the entire Data Warehouse would slow down. Yelp used these controls to solve the problem after Redshift added controls for Defining Schema Storage Limitations.
Optimizing Redshift ETL Cost
Now that we have seen the factors that broadly affect the Redshift pricing let’s look into some of the best practices that can be followed to keep the total cost of ownership down. Amazon Redshift cost optimization involves efficiently managing your clusters, resources and usage to achieve a desired performance at lowest price possible.
Data Transfer Charges: Amazon charges for data transfer also and these charges can put a serious dent to your resources if not careful enough. Data transfer charges are applicable for intra-region transfer and every transfer involving data movement from or to the locations outside AWS. It is best to keep all your deployment and data in one region as much as possible. That said this is not always practical and customers need to factor in data transfer costs while finalizing the budget
Tools: In most cases, Redshift will be used with the AWS Data pipeline for data transfer. AWS data pipeline only works for AWS-specific data sources and for external sources you may have to use other ETL tools which may also cost money. As a best practice, it is better to use a fuss-free ETL tool like LIKE.TG Data for all your ETL data transfer rather than separate tools to deal with different sources. This can help save some budget and offer a clean solution.
Vacuuming Tables: Redshift needs some housekeeping activities like VACUUM to be executed periodically for claiming the data back after deleting. Even though it is possible to automate this to execute on a fixed schedule, it is a good practice to run it after large queries that use delete markers. This can save space and thereby cost.
Archival Strategy: Follow a proper archival strategy that removes less used data into a cheaper storage mechanism like S3. Make use of the Redshift spectrum feature in rare cases where this data is required.
Data Backup: Redshift offers backup in the form of snapshots. Storage is free for backups up to 100 percent of the Redshift cluster data volume and using the automated incremental snapshots, customers can create finely-tuned backup strategies.
Data Volume: While fixing node types, it is great to have a clear idea of the total data volume right from the start itself. dc2.8xlarge systems generally offer better performance than a cluster of eight dc2.xlarge nodes.
Encoding Columns: AWS recommends customers use data compression as much as possible. Encoding the columns can not only make a difference to space but also can improve performance.
Conclusion
In this article, we discussed, in detail, about Redshift pricing model and some of the best practices to lower your overall cost of running processes in Amazon Redshift. Hence, let’s conclude by proving an extra council to control costs and increase the bottom line.
Always use reserved instances, think for the long-term, and try to predict your needs and instances where saving over on-demand is high.
Manage your snapshots well by deleting orphaned snapshots like any other backup.
Make sure to schedule your Redshift clusters and define on/off timings because they are not needed 24×7.
That said, Amazon Redshift is great for setting up Data Warehouses without spending a load amount of money on infrastructure and its maintenance.
Also, why don’t you share your reading experience of our in-detail blog and how it helped you choose or optimize Redshift pricing for your organization? We would love to hear from you!
Shopify to Snowflake: 2 Easy Methods
Companies want more data-driven insights to improve customer experiences. While Shopify stores generate lots of valuable data, it often sits in silos. Integrating Shopify data into Snowflake eliminates those silos for deeper analysis.This blog post explores two straightforward methods for moving Shopify data to Snowflake: using automated pipelines and custom code. We’ll look at the steps involved in each approach, along with some limitations to consider.
Methods for Moving Data from Shopify to Snowflake
Method 1: Moving Data from Shopify to Snowflake using LIKE.TG Data
Follow these few simple steps to move your Shopify data to Snowflake using LIKE.TG ’s no-code ETL pipeline tool.
Get Started with LIKE.TG for Free
Method 2: Move Data from Shopify to Snowflake using Custom Code
Migrating data from Shopify to Snowflake using Custom code requires technical expertise and time. However, you can achieve this through our simple guide to efficiently connect Shopify to Snowflake using the Shopify RestAPI.
Method 1: Moving Data from Shopify to Snowflake using LIKE.TG Data
LIKE.TG is the only real-time ELT No-code data pipeline platform that cost-effectively automates data pipelines that are flexible to your needs. Withintegration with 150+ Data Sources(40+ free sources), we help you not only export data from sources load data to the destinations but also transform enrich your data, make it analysis-ready with zero data loss.
Here are the steps to connect Shopify to Snowflake:
Step 1: Connect and configure your Shopify data source by providing the Pipeline Name, Shop Name, and the Admin API Password.
Step 2: Complete Shopify to Snowflake migration by providing your destination name, account name, region of your account, database username and password, database and schema name, and the Data Warehouse name.
That is it. LIKE.TG will now take charge and ensure that your data is reliably loaded from Shopify to Snowflake in real-time.
For more information on the connectors involved in the Shopify to Snowflake integration process, here are the links to the LIKE.TG documentation:
Shopify source connector
Snowflake destination connector
Here are more reasons to explore LIKE.TG :
Incremental Data Load: LIKE.TG allows the transfer of data that has been modified in real-time. This ensures efficient utilization of bandwidth on both ends.
Auto-Schema Management: Correcting improper schema after the data is loaded into your warehouse is challenging. LIKE.TG automatically maps source schema with destination warehouse so that you don’t face the pain of schema errors.
Ability to Transform Data: LIKE.TG has built-in data transformation capabilities that allow you to build SQL queries to transform data within your Snowflake data warehouse. This will ensure that you always have analysis-ready data.
Load data from Shopify to SnowflakeGet a DemoTry itLoad data from Shopify to BigQueryGet a DemoTry itLoad data from Shopify to RedshiftGet a DemoTry it
Method 2: Steps to Move Data from Shopify to Snowflake using Custom Code
In this section, you will understand the steps to move your data from Shopify to Snowflake using Custom code. So, follow the below steps to move your data:
Step 1: Pull data from Shopify’s servers using the Shopify REST API
Step 2: Preparing data for Snowflake
Step 3: Uploading JSON Files to Amazon S3
Step 4: Create an external stage
Step 5: Pull Data into Snowflake
Step 6: Validation
Step 1: Pull data from Shopify’s servers using the Shopify REST API
Shopify exposes its complete platform to developers through its Web API. The API can be accessed through HTTP using tools like CURL or Postman. The Shopify API returns JSON-formatted data. To get this data, we need to make a request to the Event endpoint like this.
GET /admin/events.json?filter=Order,Order Risk,Product,Transaction
This request will pull all the events that are related to Products, Orders, Transactions created for every order that results in an exchange of money, and Fraud analysis recommendations for these orders. The response will be in JSON.
{
"transactions": [
{
"id": 457382019,
"order_id": 719562016,
"kind": "refund",
"gateway": "bogus",
"message": null,
"created_at": "2020-02-28T15:43:12-05:00",
"test": false,
"authorization": "authorization-key",
"status": "success",
"amount": "149.00",
"currency": "USD",
"location_id": null,
"user_id": null,
"parent_id": null,
"device_id": iPad Mini,
"receipt": {},
"error_code": null,
"source_name": "web"
},
{
"id": 389404469,
"order_id": 719562016,
"kind": "authorization",
"gateway": "bogus",
"message": null,
"created_at": "2020-02-28T15:46:12-05:00",
"test": false,
"authorization": "authorization-key",
"status": "success",
"amount": "201.00",
"currency": "USD",
"location_id": null,
"user_id": null,
"parent_id": null,
"device_id": iPhoneX,
"receipt": {
"testcase": true,
"authorization": "123456"
},
"error_code": null,
"source_name": "web",
"payment_details": {
"credit_card_bin": null,
"avs_result_code": null,
"cvv_result_code": null,
"credit_card_number": "•••• •••• •••• 6183",
"credit_card_company": "Visa"
}
},
{
"id": 801038806,
"order_id": 450789469,
"kind": "capture",
"gateway": "bogus",
"message": null,
"created_at": "2020-02-28T15:55:12-05:00",
"test": false,
"authorization": "authorization-key",
"status": "success",
"amount": "90.00",
"currency": "USD",
"location_id": null,
"user_id": null,
"parent_id": null,
"device_id": null,
"receipt": {},
"error_code": null,
"source_name": "web"
}
]
}
Step 2: Preparing Data for Snowflake
Snowflake natively supports semi-structured data, which means semi-structured data can be loaded into relational tables without requiring the definition of a schema in advance. For JSON, each top-level, complete object is loaded as a separate row in the table. As long as the object is valid, each object can contain newline characters and spaces.
Typically, tables used to store semi-structured data consist of a single VARIANT column. Once the data is loaded, you can query the data like how you would query structured data.
Step 3: Uploading JSON Files to Amazon S3
To upload your JSON files to Amazon S3, you must first create an Amazon S3 bucket to hold your data. Use the AWS S3 UI to upload the files from local storage.
Step 4: Create an External Stage
An external stage specifies where the JSON files are stored so that the data can be loaded into a Snowflake table.
create or replace stage your_s3_stage url='s3://{$YOUR_AWS_S3_BUCKET}/'
credentials=(aws_key_id='{$YOUR_KEY}' aws_secret_key='{$YOUR_SECRET_KEY}')
encryption=(master_key = '5d24b7f5626ff6386d97ce6f6deb68d5=')
file_format = my_json_format;
Step 5: Pull Data into Snowflake
use role dba_shopify;
create warehouse if not exists load_wh with warehouse_size = 'small' auto_suspend = 300 initially_suspended = true;
use warehouse load_wh;
use schema shopify.public;
/*------------------------------------------
Load the pre-staged shopify data from AWS S3
------------------------------------------*/
list @{$YOUR_S3_STAGE};
/*-----------------------------------
Load the data
-----------------------------------*/
copy into shopify from @{$YOUR_S3_STAGE}
Step 6: Validation
Following the data load, verify that the correct files are present on Snowflake.
select count(*) from orders;
select * from orders limit 10;
Now, you have successfully migrated your data from Shopify to Snowflake.
Limitationsof Moving Data from Shopify to Snowflake using Custom Code
In this section, you will explore some of the limitations associated with moving data from Shopify to Snowflake using Custom code.
Pulling the data correctly from Shopify servers is just a single step in the process of defining a Data Pipeline for custom Analytics. There are other issues that you have to consider like how to respect API rate limits, handle API changes, etc.
If you would like to have a complete view of all the available data then you will have to create a much complex ETL process that includes 35+ Shopify resources.
The above process can only help you bring data from Shopify in batches. If you are looking to load data in real-time, you would need to configure cron jobs and write extra lines of code to achieve that.
Using the REST API to pull data from Shopify can be cumbersome. If Shopify changes the API or Snowflake is not reachable for a particular duration, any such anomalies can break the code and result in irretrievable data loss.
In case you would need to transform your data before loading to the Warehouse – eg: you would want to standardize time zones or unify currency values to a single denomination, then you would need to write more code to achieve this.
An easier way to overcome the above limitations of moving data from Shopify to Snowflake using Custom code is LIKE.TG .
Why integrate Shopify to Snowflake
Let’s say an e-commerce company selling its products in several countries also uses Shopify for its online stores. In each country, they have different target audiences, payment gateways, logistic channels, inventory management systems, and marketing platforms. To calculate the overall profit, the company will use:
Profit/Loss = Sales – Expenses
While the sales data stored in Shopify will have multiple data silos for different countries, expenses will be obtained based on marketing costs in advertising platforms. Additional expenses will be incurred for inventory management, payment or accounting software, and logistics. Consolidating all the data separately from different software for each country is a cumbersome task.
To improve analysis effectiveness and accuracy, the company can connect Shopify to Snowflake. By loading all the relevant data in a data warehouse like Snowflake, data analysis process won’t involve a time lag.
Here are some other use cases of integrating Shopify to Snowflake:
Advanced Analytics: You can use Snowflake’s powerful data processing capabilities for complex queries and data analysis of your Shopify data.
Historical Data Analysis: By syncing data to Snowflake, you can overcome the historical data limits of Shopify. This allows for long-term data retention and analysis of historical trends over time.
Easy Migration
Start for Free Now
Conclusion
In this article, you understood the steps to move data from Shopify Snowflake using Custom code. In addition, you explored the various limitations associated with this method. So, you were introduced to an easy solution – LIKE.TG , to move your Shopify data to Snowflake seamlessly.
visit our website to explore LIKE.TG
LIKE.TG integrates with Shopify seamlessly and brings data to Snowflake without the added complexity of writing and maintaining ETL scripts. It helps transfer data fromShopifyto a destination of your choice forfree.
sign up for a 14-day free trial with LIKE.TG . This will give you an opportunity to experience LIKE.TG ’s simplicity so that you enjoy an effortless data load from Shopify to Snowflake. You can also have a look at the unbeatableLIKE.TG Pricingthat will help you choose the right plan for your business needs.
What are your thoughts on moving data from Shopify to Snowflake? Let us know in the comments.
Google BigQuery ETL: 11 Best Practices For High Performance
Google BigQuery – a fully managed Cloud Data Warehouse for analytics from Google Cloud Platform (GCP), is one of the most popular Cloud-based analytics solutions. Due to its unique architecture and seamless integration with other services from GCP, there are certain best practices to be considered while configuring Google BigQuery ETL (Extract, Transform, Load) migrating data to BigQuery. This article will give you a birds-eye on how Google BigQuery can enhance the ETL Process in a seamless manner. Read along to discover how you can use Google BigQuery ETL for your organization!
Best Practices to Perform Google BigQuery ETL
Given below are 11 Best Practices Strategies individuals can use to perform Google BigQuery ETL:
GCS as a Staging Area for BigQuery Upload
Handling Nested and Repeated Data
Data Compression Best Practices
Time Series Data and Table Partitioning
Streaming Insert
Bulk Updates
Transforming Data after Load (ELT)
Federated Tables for Adhoc Analysis
Access Control and Data Encryption
Character Encoding
Backup and Restore
Simplify BigQuery ETL with LIKE.TG ’s no-code Data Pipeline
LIKE.TG is the only real-time ELT No-code Data Pipeline platform that cost-effectively automates data pipelines that are flexible to your needs. With integration with 150+ Data Sources (40+ free sources), we help you not only export data from sources load data to the destinations but also transform enrich your data, make it analysis-ready.
Get Started with LIKE.TG for Free
Its completely automated pipeline offers data to be delivered in real-time without any loss from source to destination. Its fault-tolerant and scalable architecture ensure that the data is handled in a secure, consistent manner with zero data loss and supports different forms of data.
SIGN UP HERE FOR A 14-DAY FREE TRIAL
1. GCS – StagingArea for BigQuery Upload
Unless you are directly loading data from your local machine, the first step in Google BigQuery ETL is to upload data to GCS. To move data to GCS you have multiple options:
Gsutil is a command line tool which can be used to upload data to GCS from different servers.
If your data is present in any online data sources like AWS S3 you can use Storage Transfer Service from Google cloud. This service has options to schedule transfer jobs.
Other things to be noted while loading data to GCS:
GCS bucket and Google BigQuery dataset should be in the same location with one exception – If the dataset is in the US multi-regional location, data can be loaded from GCS bucket in any regional or multi-regional location.
The format supported to upload from GCS to Google BigQuery are – Comma-separated values (CSV), JSON (newline-delimited), Avro, Parquet, ORC, Cloud Datastore exports, Cloud Firestore exports.
2. Nested and Repeated Data
This is one of the most important Google BigQuery ETL best practices. Google BigQuery performs best when the data is denormalized. Instead of keeping relations, denormalize the data and take advantage of nested and repeated fields. Nested and repeated fields are supported in Avro, Parquet, ORC, JSON (newline delimited) formats. STRUCT is the type that can be used to represent an object which can be nested and ARRAY is the type to be used for the repeated value.
For example, the following row from a BigQuery table is an array of a struct:
{
"id": "1",
"first_name": "Ramesh",
"last_name": "Singh",
"dob": "1998-01-22",
"addresses": [
{
"status": "current",
"address": "123 First Avenue",
"city": "Pittsburgh",
"state": "WA",
"zip": "11111",
"numberOfYears": "1"
},
{
"status": "previous",
"address": "456 Main Street",
"city": "Pennsylvania",
"state": "OR",
"zip": "22222",
"numberOfYears": "5"
}
]
}
3. Data Compression
The next vital Google BigQuery ETL best practice is on Data Compression. Most of the time the data will be compressed before transfer. You should consider the below points while compressing data.
The binary Avro is the most efficient format for loading compressed data.
Parquet and ORC format are also good as they can be loaded in parallel.
For CSV and JSON, Google BigQuery can load uncompressed files significantly faster than compressed files because uncompressed files can be read in parallel.
4. Time Series Data and Table Partitioning
Time Series data is a generic term used to indicate a sequence of data points paired with timestamps. Common examples are clickstream events from a website or transactions from a Point Of Sale machine. The velocity of this kind of data is much higher and volume increases over time. Partitioning is a common technique used to efficiently analyze time-series data and Google BigQuery has good support for this with partitioned tables. Partitioned Tables are crucial in Google BigQuery ETL operations because it helps in the Storage of data.
A partitioned table is a special Google BigQuery table that is divided into segments often called as partitions. It is important to partition bigger table for better maintainability and query performance. It also helps to control costs by reducing the amount of data read by a query. Automated tools like LIKE.TG Data can help you partition BigQuery ETL tables within the UI only which helps streamline your ETL even faster.
To learn more about partitioning in Google BigQuery, you can read our blog here.
Google BigQuery has mainly three options to partition a table:
Ingestion-time partitioned tables – For these type of table BigQuery automatically loads data into daily, date-based partitions that reflect the data’s ingestion date. A pseudo column named _PARTITIONTIME will have this date information and can be used in queries.
Partitioned tables – Most common type of partitioning which is based on TIMESTAMP or DATE column. Data is written to a partition based on the date value in that column. Queries can specify predicate filters based on this partitioning column to reduce the amount of data scanned.
You should use the date or timestamp column which is most frequently used in queries as partition column.
Partition column should also distribute data evenly across each partition. Make sure it has enough cardinality.
Also, note that the Maximum number of partitions per partitioned table is 4,000.
Legacy SQL is not supported for querying or for writing query results to partitioned tables.
Sharded Tables – You can also think of shard tables using a time-based naming approach such as [PREFIX]_YYYYMMDD and use a UNION while selecting data.
Generally, Partitioned tables perform better than tables sharded by date. However, if you have any specific use-case to have multiple tables you can use sharded tables. Ingestion-time partitioned tables can be tricky if you are inserting data again as part of some bug fix.
5. Streaming Insert
The next vital Google BigQuery ETL best practice is on actually inserting data. For inserting data into a Google BigQuery table in batch mode a load job will be created which will read data from the source and insert it into the table. Streaming data will enable us to query data without any delay in the load job. Stream insert can be performed on any Google BigQuery table using Cloud SDKs or other GCP services like Dataflow (Dataflow is an auto-scalable stream and batch data processing service from GCP ). The following things should be noted while performing stream insert:
Streaming data is available for the query after a few seconds of the first stream inserted in the table.
Data takes up to 90 minutes to become available for copy and export.
While streaming to a partitioned table, the value of _PARTITIONTIME pseudo column will be NULL.
While streaming to a table partitioned on a DATE or TIMESTAMP column, the value in that column should be between 1 year in the past and 6 months in the future. Data outside this range will be rejected.
6. Bulk Updates
Google BigQuery has quotas and limits for DML statements which is getting increased over time. As of now the limit of combined INSERT, UPDATE, DELETE and MERGE statements per day per table is 1,000. Note that this is not the number of rows. This is the number of the statement and as you know, one single DML statement can affect millions of rows.
Now within this limit, you can run updates or merge statements affecting any number of rows. It will not affect any query performance, unlike many other analytical solutions.
7. Transforming Data after Load (ELT)
Google BigQuery ETL must also address ELT in some scenarios as ELT is the popular methodology now. Sometimes it is really handy to transform data within Google BigQuery using SQL, which is often referred to as Extract Load Transfer (ELT). BigQuery supports both INSERT INTO SELECT and CREATE TABLE AS SELECT methods to data transfer across tables.
INSERT das.DetailedInve (product, quantity)
VALUES('television 50',
(SELECT quantity FROM ds.DetailedInv
WHERE product = 'television'))
CREATE TABLE mydataset.top_words
AS SELECT corpus,ARRAY_AGG(STRUCT(word, word_count)) AS top_words
FROM bigquery-public-data.samples.shakespeare GROUP BY corpus;
8. Federated Tables for Adhoc Analysis
You can directly query data stored in the location below from BigQuery which is called federated data sources or tables.
Cloud BigTable
GCS
Google Drive
Things to be noted while using this option:
Query performance might not be good as the native Google BigQuery table.
No consistency is guaranteed in case of external data is changed while querying.
Can’t export data from an external data source using BigQuery Job.
Currently, Parquet or ORC format is not supported.
The query result is not cached, unlike native BigQuery tables.
9. Access Control and Data Encryption
Data stored in Google BigQuery is encrypted by default and keys are managed by GCP Alternatively customers can manage keys using the Google KMS service.
To grant access to resources, BigQuery uses IAM(Identity and Access Management) to the dataset level. Tables and views are child resources of datasets and inherit permission from the dataset. There are predefined roles like bigquery.dataViewer and bigquery.dataEditor or the user can create custom roles.
10. Character Encoding
Sometimes it will take some time to get the correct character encoding scheme while transferring data. Take notes of the points mentioned below as it will help you to get them correct in the first place.
To perform Google BigQuery ETL, all source data should be UTF-8 encoded with the below exception
If a CSV file with data encoded in ISO-8859-1 format, it should be specified and BigQuery will properly convert the data to UTF-8
Delimiters should be encoded as ISO-8859-1
Non-convertible characters will be replaced with Unicode replacement characters: �
11. Backup and Restore
Google BigQuery ETL addresses backup and disaster recovery at the service level. The user does not need to worry about it. Still, Google BigQuery is maintaining a complete 7-day history of changes against tables and allows to query a point-in-time snapshot of the table.
Concerns when using BigQuery
You should be aware of potential issues or difficulties. You may create better data pipelines and data solutions where these problems can be solved by having a deeper understanding of these concerns.
Limited data type support
BigQuery does not accept arrays, structs, or maps as data types. Therefore, in order to make such data suitable with your data analysis requirements, you will need to modify them.
Dealing with unstructured data
When working with unstructured data in BigQuery, you need to account for extra optimisation activities or transformational stages. BigQuery handles structured and semi-structured data with ease. However, unstructured data might make things a little more difficult.
Complicated workflow
Getting started with BigQuery’s workflow function may be challenging for novices, particularly if they are unfamiliar with fundamental SQL or other aspects of data processing.
Lack of support for Modify/Update delete operations on individual rows
To change any row, you have to either alter the entire table or utilize an insert, update, and delete combo.
Serial operations
BigQuery is well-suited to processing bulk queries in parallel. However, if you try to conduct serial operations, you can discover that it performs worse.
Daily table update limit
A table can be updated up to 1000 times in a day by default. You will need to request and raise the quota in order to get more updates.
Common Stages in a BigQuery ELT Pipeline
Let’s look into the typical steps in a BigQuery ELT pipeline:
Transferring data from file systems, local storage, or any other media
Data loading into Google Cloud Platform services (GCP)
Data loading into BigQuery
Data transformation using methods, processes, or SQL queries
There are two methods for achieving data transformation with BigQuery:
Using Data Transfer Services
This method loads data into BigQuery using GCP native services, and SQL handles the transformation duties after that.
Using GCS
In this method, tools such as Distcp, Sqoop, Spark Jobs, GSUtil, and others are used to load data into the GCS (Google Cloud Storage) bucket. In this method, SQL may also do the change.
Conclusion
In this article, you have learned 11 best practices you can employ to perform. Google BigQuery ETL operations. However, performing these operations manually time and again can be very taxing and is not feasible. You will need to implement them manually, which will consume your time resources, and writing custom scripts can be error-prone. Moreover, you need full working knowledge of the backend tools to successfully implement the in-house Data transfer mechanism. You will also have to regularly map your new files to the Google BigQuery Data Warehouse.
Want to take LIKE.TG for a spin? Sign Up for a 14-day free trial and experience the feature-rich LIKE.TG suite first hand.Checkout LIKE.TG pricing and find a plan that suits you best.
Have any further queries? Get in touch with us in the comments section below.
How To Move Your Data From MySQL to Redshift: 2 Easy Methods
Is your MySQL server getting too slow for analytical queries now? Or are you looking to join data from another Database while running queries? Whichever your use case, it is a great decision to move the data from MySQL to Redshift for analytics. This post covers the detailed steps you need to follow to migrate data from MySQL to Redshift. You will also get a brief overview of MySQL and Amazon Redshift. You will also explore the challenges involved in connecting MySQL to Redshift using custom ETL scripts. Let’s get started.
Methods to Set up MySQL to Redshift
Method 1: Using LIKE.TG to Set up MySQL to Redshift Integration
Method 2: Incremental Load for MySQL to Redshift Integration
Method 3: Change Data Capture With Binlog
Method 4: Using custom ETL scripts
Method 1: Using LIKE.TG to Set up MySQL to Redshift Integration
LIKE.TG is the only real-time ELT No-code Data Pipeline platform that cost-effectively automates data pipelines that are flexible to your needs.
The following steps can be implemented to set up MySQL to Redshift Migration using LIKE.TG :
Configure Source:Connect LIKE.TG Data with Oracle by providing a unique name for your Pipeline along with information about your MySQL database such as its name, IP Address, Port Number, Username, Password, etc.
IntegrateData:Complete MySQL to Redshift Migration by providing your MySQL database and Redshift credentials such as your authorized Username and Password, along with information about your Host IP Address and Port Number value. You will also need to provide a name for your database and a unique name for this destination.
Advantages of Using LIKE.TG
There are a couple of reasons why you should opt for LIKE.TG over building your own solution to migrate data from CleverTap to Redshift.
Automatic Schema Detection and Mapping: LIKE.TG scans the schema of incoming CleverTap automatically. In case of any change, LIKE.TG seamlessly incorporates the change in Redshift.
Ability to Transform Data –LIKE.TG allows you to transfer data both before and after moving it to the Data Warehouse. This ensures that you always have analysis-ready data in your Redshift Data Warehouse.
Incremental Data Load: LIKE.TG allows the transfer of data that has been modified in real-time. This ensures efficient utilization of bandwidth on both ends.
Method 2: Incremental Load for MySQL to Redshift Integration
You can follow the below-mentioned steps to connect MySQL to Redshift.
Step 1: Dump the data into files
Step 2: Clean and Transform
Step 3: Upload to S3 and Import into Redshift
Step 1. Dump the Data into Files
Ways to Set up MySQL to Redshift Integration
Method 1: Manually Set up MySQL to Redshift Integration
Method 2: Using LIKE.TG Data to Set up MySQL to Redshift Integration
Get Started with LIKE.TG for Free
The most efficient way of loading data in Amazon Redshift is through the COPY command that loads CSV/JSON files into the Amazon Redshift. So, the first step is to bring the data in your MySQL database to CSV/JSON files.
There are essentially two ways of achieving this:
1) Using mysqldump command.
mysqldump -h mysql_host -u user database_name table_name --result-file table_name_data.sql
The above command will dump data from a table table_name to the filetable_name_data.sql. But, the file will not be in CSV/JSON format required for loading into Amazon Redshift. This is how a typical row may look like in the output file:
INSERT INTO `users` (`id`, `first_name`, `last_name`, `gender`) VALUES (3562, ‘Kelly’, ‘Johnson’, 'F'),(3563,’Tommy’,’King’, 'M');
The above rows will need to be converted to the following format:
"3562","Kelly","Johnson", "F"
"3563","Tommy","King","M"
2) Query the data into a file.
mysql -B -u user database_name -h mysql_host
-e "SELECT * FROM table_name;" |
sed "s/'/'/;s/t/","/g;s/^/"/;s/$/"/;s/n//g"
> table_name_data.csv
You will have to do this for all tables:
for tb in $(mysql -u user -ppassword database_name -sN -e "SHOW TABLES;"); do
echo .....;
done
Step 2. Clean and Transform
There might be several transformations required before you load this data into Amazon Redshift. e.g.‘0000-00-00’ is a valid DATE value in MySQL but in Redshift, it is not. Redshift accepts ‘0001-01-01’ though. Apart from this, you may want to clean up some data according to your business logic, you may want to make time zone adjustments, concatenate two fields, or split a field into two. All these operations will have to be done over files and will be error-prone.
Step 3. Upload to S3 and Import into Amazon Redshift
Once you have the files to be imported ready, you will upload them to an S3 bucket. Then run copy command:
COPY table_name FROM 's3://my_redshift_bucket/some-path/table_name/' credentials
'aws_access_key_id=my_access_key;aws_secret_access_key=my_secret_key';
Again, the above operation has to be done for every table.
Once the COPY has been run, you can check the stl_load_errors table for any copy failures. After completing the aforementioned steps, you can migrate MySQL to Redshift successfully.
In a happy scenario, the above steps should just work fine. However, in real-life scenarios, you may encounter errors in each of these steps. e.g. :
Network failures or timeouts during dumping MySQL data into files.
Errors encountered during transforming data due to an unexpected entry or a new column that has been added
Network failures during S3 Upload.
Timeout or data compatibility issues during Redshift COPY. COPY might fail due to various reasons, a lot of them will have to be manually looked into and retried.
Challenges of Connecting MySQL to Redshift using Custom ETL Scripts
The custom ETL method to connect MySQL to Redshift is effective. However, there are certain challenges associated with it. Below are some of the challenges that you might face while connecting MySQL to Redshift:
In cases where data needs to be moved once or in batches only, the custom script method works. This approach fails if you have to move data from MySQL to Redshift in real-time.
Incremental load (change data capture) becomes tedious as there will be additional steps that you need to follow to achieve the connection.
Often, when you write code to extract a subset of data, those scripts break as the source schema keeps changing or evolving. This can result in data loss.
The process mentioned above is brittle, error-prone, and often frustrating. These challenges impact the consistency and accuracy of the data available in your Amazon Redshift in near real-time. These were the common challenges that most users find while connecting MySQL to Redshift.
Method 3: Change Data Capture With Binlog
The process of applying changes made to data in MySQL to the destination Redshift table is called Change Data Capture (CDC).
You need to use the Binary Change Log (binlog) in order to apply the CDC technique to a MySQL database. Replication may occur almost instantly when change data is captured as a stream using Binlog.
Binlog records table structure modifications like ADD/DROP COLUMN in addition to data changes like INSERT, UPDATE, and DELETE. Additionally, it guarantees that Redshift also deletes records that are removed from MySQL.
Getting Started with Binlog
When you use CDC with Binlog, you are actually writing an application that reads, transforms, and imports streaming data from MySQL to Redshift.
You may accomplish this by using an open-source module called mysql-replication-listener. A streaming API for real-time data reading from MySQL bBnlog is provided by this C++ library. For a few languages, such as python-mysql-replication (Python) and kodama (Ruby), a high-level API is also offered.
Drawbacks using Binlog
Building your CDC application requires serious development effort.
Apart from the above-mentioned data streaming flow, you will need to construct:
Transaction management: In the event that a mistake causes your program to terminate while reading Binlog data, monitor data streaming performance. You may continue where you left off, thanks to transaction management.
Data buffering and retry: Redshift may also stop working when your application is providing data. Unsent data must be buffered by your application until the Redshift cluster is back up. Erroneous execution of this step may result in duplicate or lost data.
Table schema change support: A modification to the table schema The ALTER/ADD/DROP TABLE Binlog event is a native MySQL SQL statement that isn’t performed natively on Redshift. You will need to convert MySQL statements to the appropriate Amazon Redshift statements in order to enable table schema updates.
Method 4: Using custom ETL scripts
Step 1: Configuring a Redshift cluster on Amazon
Make that a Redshift cluster has been built, and write down the database name, login, password, and cluster endpoint.
Step 2: Creating a custom ETL script
Select a familiar and comfortable programming language (Python, Java, etc.).
Install any required libraries or packages so that your language can communicate with Redshift and MySQL Server.
Step 3: MySQL data extraction
Connect to the MySQL database.
Write a SQL query to extract the data you need. You can use this query in your script to pull the data.
Step 4: Data transformation
You can perform various data transformations using Python’s data manipulation libraries like `pandas`.
Step 5: Redshift data loading
With the received connection information, establish a connection to Redshift.
Run the required instructions in order to load the data. This might entail establishing schemas, putting data into tables, and generating them.
Step 6: Error handling, scheduling, testing, deployment, and monitoring
Try-catch blocks should be used to handle errors. Moreover, messages can be recorded to a file or logging service.
To execute your script at predetermined intervals, use a scheduling application such as Task Scheduler (Windows) or `cron` (Unix-based systems).
Make sure your script handles every circumstance appropriately by thoroughly testing it with a variety of scenarios.
Install your script on the relevant environment or server.
Set up your ETL process to be monitored. Alerts for both successful and unsuccessful completions may fall under this category. Examine your script frequently and make any necessary updates.
Don’t forget to change placeholders with your real values (such as `}, `}, `}, etc.). In addition, think about enhancing the logging, error handling, and optimizations in accordance with your unique needs.
Disadvantages of using ETL scripts for MySQL Redshift Integration
Lack of GUI:The flow could be harder to understand and debug.
Dependencies and environments: Without modification, custom scripts might not run correctly on every operating system.
Timelines: Creating a custom script could take longer than constructing ETL processes using a visual tool.
Complexity and maintenance: Writing bespoke scripts takes more effort in creation, testing, and maintenance.
Restricted Scalability: Performance issues might arise from their inability to handle complex transformations or enormous volumes of data.
Security issues: Managing sensitive data and login credentials in scripts needs close oversight to guarantee security.
Error Handling and Recovery: It might be difficult to develop efficient mistake management and recovery procedures. In order to ensure the reliability of the ETL process, it is essential to handle various errors.
Why Replicate Data From MySQL to Redshift?
There are several reasons why you should replicate MySQL data to the Redshift data warehouse.
Maintain application performance.
Analytical queries can have a negative influence on the performance of your production MySQL database, as we have already discussed. It could even crash as a result of it. Analytical inquiries need specialized computer power and are quite resource-intensive.
Analyze ALL of your data.
MySQL is intended for transactional data, such as financial and customer information, as it is an OLTP (Online Transaction Processing) database. But, you should use all of your data, even the non-transactional kind, to get insights. Redshift allows you to collect and examine all of your data in one location.
Faster analytics.
Because Redshift is a data warehouse with massively parallel processing (MPP), it can process enormous amounts of data much faster. However, MySQL finds it difficult to grow to meet the processing demands of complex, contemporary analytical queries. Not even a MySQL replica database will be able to match Redshift’s performance.
Scalability.
Instead of the distributed cloud infrastructure of today, MySQL was intended to operate on a single-node instance. Therefore, time- and resource-intensive strategies like master-node setup or sharding are needed to scale beyond a single node. The database becomes even slower as a result of all of this.
Above mentioned are some of the use cases of MySQL to Redshift replication.
Before we wrap up, let’s cover some basics.
Why Do We Need to Move Data from MySQL to Redshift?
Every business needs to analyze its data to get deeper insights and make smarter business decisions. However, performing Data Analytics on huge volumes of historical data and real-time data is not achievable using traditional Databases such as MySQL.
MySQL can’t provide high computation power that is a necessary requirement for quick Data Analysis. Companies need Analytical Data Warehouses to boost their productivity and run processes for every piece of data at a faster and efficient rate.
Amazon Redshift is a fully managed Could Data Warehouse that can provide vast computing power to maintain performance and quick retrieval of data and results.
Moving data from MySQL to Redshift allow companies to run Data Analytics operations efficiently. Redshift columnar storage increases the query processing speed.
Conclusion
This article provided you with a detailed approach using which you can successfully connect MySQL to Redshift.
You also got to know about the limitations of connecting MySQL to Redshift using the custom ETL method. Big organizations can employ this method to replicate the data and get better insights by visualizing the data.
Thus, connecting MySQL to Redshift can significantly help organizations to make effective decisions and stay ahead of their competitors.
Connecting Amazon RDS to Redshift: 3 Easy Methods
var source_destination_email_banner = 'true';
Are you trying to derive deeper insights from your Amazon RDS by moving the data into a Data Warehouse like Amazon Redshift? Well, you have landed on the right article. Now, it has become easier to replicate data from Amazon RDS to Redshift.This article will give you a brief overview of Amazon RDS and Redshift. You will also get to know how you can set up your Amazon RDS to Redshift Integration using 3 popular methods. Moreover, the limitations in the case of the manual method will also be discussed in further sections. Read along to decide which method of connecting Amazon RDS to Redshift is best for you.
Prerequisites
You will have a much easier time understanding the ways for setting up the Amazon RDS to Redshift Integration if you have gone through the following aspects:
An active AWS account.
Working knowledge of Databases and Data Warehouses.
Working knowledge of Structured Query Language (SQL).
Clear idea regarding the type of data to be transferred.
Introduction to Amazon RDS
Amazon RDS provides a very easy-to-use transactional database that frees the developer from all the headaches related to database service management and keeping the database up. It allows the developer to select the desired backend and focus only on the coding part.
To know more about Amazon RDS, visit this link.
Introduction to Amazon Redshift
Amazon Redshift is a Cloud-based Data Warehouse with a very clean interface and all the required APIs to query and analyze petabytes of data. It allows the developer to focus only on the analysis jobs and forget all the complexities related to managing such a reliable warehouse service.
To know more about Amazon Redshift, visit this link.
A Brief About the Migration Process of AWS RDS to Redshift
The above image represents the Data Migration Process from the Amazon RDS to Redshift using AWS DMS service.
AWS DMS is a cloud-based service designed to migrate data from relational databases to a data warehouse. In this process, DMS creates replication servers within a Multi-AZ high availability cluster, where the migration task is executed. The DMS system consists of two endpoints: a source that establishes a connection to the database that extracts structured data and a destination that connects to AWS redshift for loading data into the data warehouse.
DMS is also capable of detecting changes in the source schema and loads only newly generated tables into the destination as source data keeps growing.
Methods to Set up Amazon RDS to Redshift Integration
Method 1: Using LIKE.TG Data to Set up Amazon RDS to Redshift Integration
Using LIKE.TG Data, you can seamlessly integrate Amazon RDS to Redshift in just two easy steps. All you need to do is Configure the source and destination and provide us with the credentials to access your data. LIKE.TG takes care of all your Data Processing needs and lets you focus on key business activities.
Method 2: Manual ETL Process to Set up Amazon RDS to Redshift Integration
For this section, we assume that Amazon RDS uses MySQL as its backend. In this method, we have dumped all the contents of MySQL and recreated all the tables related to this database at the Redshift end.
Method 3: Using AWS Pipeline to Set up Amazon RDS to Redshift Integration
In this method, we have created an AWS Data Pipeline to integrate RDS with Redshift and to facilitate the flow of data.
Get Started with LIKE.TG for Free
Methods to Set up Amazon RDS to Redshift Integration
This article delves into both the manual and using LIKE.TG methods to set up Amazon RDS to Redshift Integration. You will also see some of the pros and cons of these approaches and would be able to pick the best method based on your use case.Below are the three methods for RDS to Amazon Redshift ETL:
Method 1: Using LIKE.TG Data to Set up Amazon RDS to Redshift Integration
LIKE.TG is the only real-time ELT No-code Data Pipeline platform that cost-effectively automates data pipelines that are flexible to your needs.
The steps to load data from Amazon RDS to Redshift using LIKE.TG Data are as follows:
Step 1: Configure Amazon RDS as the Source
Connect your Amazon RDS account to LIKE.TG ’s platform. LIKE.TG has an in-built Amazon RDS MySQL Integration that connects to your account within minutes.
After logging in to your LIKE.TG account, click PIPELINES in the Navigation Bar.
Next, in the Pipelines List View, click the + CREATE button.
On the Select Source Type page, select Amazon RDS MySQl.
Specify the required information in the Configure your Amazon RDS MySQL Source page to complete the source setup.
Learn more about configuring Amazon RDS MySQL source here.
Step 2: Configure RedShift as the Destination
Select Amazon Redshift as your destination and start moving your data.
To Configure Amazon Redshift as a Destination
Click DESTINATIONS in the Navigation Bar.
Within the Destinations List View, click + CREATE.
In the Add Destination page, select Amazon Redshift and configure your settings
Learn more about configuring Redshift as a destination here.
Click TEST CONNECTION and Click SAVE CONTINUE. These buttons are enabled once all the mandatory fields are specified.
Here are more reasons to try LIKE.TG :
Secure: LIKE.TG has a fault-tolerant architecture that ensures that the data is handled in a secure, consistent manner with zero data loss.
Schema Management: LIKE.TG takes away the tedious task of schema management automatically detects the schema of incoming data and maps it to the destination schema.
Incremental Data Load: LIKE.TG allows the transfer of data that has been modified in real-time. This ensures efficient utilization of bandwidth on both ends.
Integrate Amazon RDS to RedshiftGet a DemoTry itIntegrate Amazon RDS to BigQueryGet a DemoTry itIntegrate MySQL to RedshiftGet a DemoTry it
Method 2: Manual ETL Process to Set up Amazon RDS to Redshift Integration using MySQL
For the scope of this post, let us assume RDS is using MySQL as the backend.
The easiest way to do this data copy is to dump all the contents of MySQL and recreate all the tables related to this database at the Redshift end. Let us look deeply into the steps that are involved in RDS to Redshift replication.
Step 1: Export RDS Table to CSV File
Step 2: Copying the Source Data Files to S3
Step 3: Loading Data to Redshift in Case of Complete Overwrite
Step 4: Creating a Temporary Table for Incremental Load
Step 5: Delete the Rows which are Already Present in the Target Table
Step 6: Insert the Rows from the Staging Table
Step 1: Export RDS Table to CSV file
The first step here is to use mysqldump to export the table into a CSV file. The problem with the mysqldump command is that you can use it to export to CSV, only if you are executing the command from the MySQL server machine itself. Since RDS is a managed database service, these instances usually do not have enough disk space to hold large amounts of data. To avoid this problem, we need to export the data first to a different local machine or an EC2 instance.
Mysql -B -u username -p password sourcedb -h dbhost -e "select * from source_table" -B | sed "s/'/'/;s/t/","/g;s/^/"/;s/$/"/;s/n//g" > source_table.csv
The above command selects the data from the desired table and exports it into a CSV file.
Step 2: Copying the Source Data Files to S3
Once the CSV is generated, we need to copy this data into an S3 bucket from where Redshift can access this data. Assuming you have AWS CLI installed on our local computer this can be accomplished using the below command.
aws s3 cp source_table.csv s3://my_bucket/source_table/
Step 3: Loading Data to Redshift in Case of Complete Overwrite
This step involves copying the source files into a redshift table using the native copy command of redshift. For doing this, log in to the AWS management console and navigate to Query Editor from the redshift console. Once in Query editor type the following command and execute.
copy target_table_name from ‘s3://my_bucket/source_table’ credentials access_key_id secret_access_key
Where access_key_id and secret_access_key represents the IAM credentials
Step 4: Creating a Temporary Table for Incremental Load
The above steps to load data into Redshift are advisable only in case of a complete overwrite of a Redshift table. In most cases, there is already data existing in the Redshift table and there is a need to update the already existing primary keys and insert the new rows. In such cases, we first need to load the data from S3 into a temporary table and then insert it to the final destination table.
create temp table stage (like target_table_name)
Note that creating the table using the ‘like’ keyword is important here since the staging table structure should be similar to the target table structure including the distribution keys.
Step 5: Delete the Rows which are Already Present in the Target Table:
begin transaction; delete from target_table_name using stage where targettable_name.primarykey = stage.primarykey;
Step 6: Insert the Rows from the Staging Table
insert into target_table_name select * from stage; end transaction;
The above approach works with copying data to Redshift from any type of MySQL instance and not only the RDS instance. The issue with using the above approach is that it requires the developer to have access to a local machine with sufficient disk memory. The whole point of using a managed database service is to avoid the problems associated with maintaining such machines. That leads us to another service that Amazon provides to accomplish the same task – AWS Data Pipeline.
Set up your integartion semalessly
[email protected]">
No credit card required
Limitations of Manually Setting up Amazon RDS to Redshift Integration
The above methods’ biggest limitation is that while the copying process is in progress, the original database may get slower because of all the load. A workaround is to first create a copy of this database and then attempt the steps on that copy database.
Another limitation is that this activity is not the most efficient one if this is going to be executed as a periodic job repeatedly. And in most cases in a large ETL pipeline, it has to be executed periodically. In those cases, it is better to use a syncing mechanism that continuously replicates to Redshift by monitoring the row-level changes to RDS data.
In normal situations, there will be problems related to data type conversions while moving from RDS to Redshift in the first approach depending on the backend used by RDS. AWS data pipeline solves this problem to an extent using automatic type conversion. More on that in the next point.
While copying data automatically to Redshift, MYSQL or RDS data types will be automatically mapped to Redshift data types. If there are columns that need to be mapped to specific data types in Redshift, they should be provided in pipeline configuration against the ‘RDS to Redshift conversion overrides’ parameter. The mapping rule for the commonly used data types is as follows:
You now understand the basic way of copying data from RDS to Redshift. Even though this is not the most efficient way of accomplishing this, this method is good enough for the initial setup of the warehouse application. In the longer run, you will need a more efficient way of periodically executing these copying operations.
Method 3: Using AWS Pipeline to Set up Amazon RDS to Redshift Integration
AWS Data Pipeline is an easy-to-use Data Migration Service with built-in support for almost all of the source and target database combinations. We will now look into how we can utilize the AWS Data Pipeline to accomplish the same task.
As the name suggests AWS Data pipeline represents all the operations in terms of pipelines. A pipeline is a collection of tasks that can be scheduled to run at different times or periodically. A pipeline can be a set of custom tasks or built from a template that AWS provides. For this task, you will use such a template to copy the data. Below are the steps to set up Amazon RDS to Redshift Integration using AWS Pipeline:
Step 1: Creating a Pipeline
Step 2: Choosing a Built-in Template for Complete Overwrite of Redshift Data
Step 3: Providing RDS Source Data
Step 4: Choosing a Template for an Incremental Update
Step 5: Selecting the Run Frequency
Step 6: Activating the Pipeline and Monitoring the Status
Step 1: Creating a Pipeline
The first step is to log in to https://console.aws.amazon.com/datapipeline/ and click on Create Pipeline. Enter the pipeline name and optional description.
Step 2: Choosing a Built-in Template for Complete Overwrite of Redshift Data
After entering the pipeline name and the optional description, select ‘Build using a template.’ From the templates available choose ‘Full Copy of Amazon RDS MySQL Table to Amazon Redshift’
Step 3: Providing RDS Source Data
While choosing the template, information regarding the source RDS instance, staging S3 location, Redshift cluster instance, and EC2 keypair names are to be provided.
Step 4: Choosing a Template for an Incremental Update
In case there is an already existing Redshift table and the intention is to update the table with only the changes, choose ‘Incremental Copy of an Amazon RDS MySQL Table to Amazon Redshift‘ as the template.
Step 5: Selecting the Run Frequency
After filling in all the required information, you need to select whether to run the pipeline once or schedule it periodically. For our purpose, we should select to run the pipeline on activation.
Step 6: Activating the Pipeline and Monitoring the Status
The next step is to activate the pipeline by clicking ‘Activate’ and wait until the pipeline runs. AWS pipeline console lists all the pipelines and their status. Once the pipeline is in FINISHED status, you will be able to view the newly created table in Redshift.
The biggest advantage of this method is that there is no need for a local machine or a separate EC2 instance for the copying operation. That said, there are some limitations for both these approaches and those are detailed in the below section.
Download the Cheatsheet on How to Set Up High-performance ETL to Redshift
Learn the best practices and considerations for setting up high-performance ETL to Redshift
Before wrapping up, let’s cover some basics.
Best Practices for Data Migration
Planning and Documentation – You can define the scope of data migration, the source from where data will be extracted, and the destination to which it will be loaded. You can also define how frequently you want the migration jobs to take place.
Assessment and Cleansing – You can assess the quality of your existing data to identify issues such as duplicates, inconsistencies, or incomplete records.
Backup and Roll-back Planning – You can always backup your data before migrating it, which you can refer to in case of failure during the process. You can have a rollback strategy to revert to the previous system or data state in case of unforeseen issues or errors.
Benefits of Replicating Data from Amazon RDS to Redshift
Many organizations will have a separate database (Eg: Amazon RDS) for all the online transaction needs and another warehouse (Eg: Amazon Redshift) application for all the offline analysis and large aggregation requirements. Here are some of the reasons to move data from RDS to Redshift:
The online database is usually optimized for quick responses and fast writes. Running large analysis or aggregation jobs over this database will slow down the database and can affect your customer experience.
The warehouse application can have data from multiple sources and not only transactional data. There may be third-party sources or data sources from other parts of the pipeline that needs to be used for analysis or aggregation.
What the above reasons point to, is a need to move data from the transactional database to the warehouse application on a periodic basis. In this post, we will deal with moving the data between two of the most popular cloud-based transactional and warehouse applications – Amazon RDS and Amazon Redshift.
Conclusion
This article gave you a comprehensive guide to Amazon RDS and Amazon Redshift and how you can easily set up Amazon RDS to Redshift Integration. It can be concluded that LIKE.TG seamlessly integrates with RDS and Redshift ensuring that you see no delay in terms of setup and implementation. LIKE.TG will ensure that the data is available in your warehouse in real-time. LIKE.TG ’s real-time streaming architecture ensures that you have accurate, latest data in your warehouse.
Visit our Website to Explore LIKE.TG
Businesses can use automated platforms likeLIKE.TG Data to set this integration and handle the ETL process. It helps you directly transfer data from a source of your choice to a Data Warehouse, Business Intelligence tools, or any other desired destination in a fully automated and secure manner without having to write any code and will provide you a hassle-free experience.
Want to try LIKE.TG ?
Sign Up for a 14-day free trialand experience the feature-rich LIKE.TG suite first hand. Have a look at our unbeatablepricing, which will help you choose the right plan for you.
Share your experience of loading data from Amazon RDS to Redshift in the comment section below.
FAQs to load data from RDS to RedShift
1. How to migrate from RDS to Redshift?
To migrate data from RDS (Amazon Relational Database Service) to Redshift:1. Extract data from RDS using AWS DMS (Database Migration Service) or a data extraction tool.2. Load the extracted data into Redshift using COPY commands or AWS Glue for ETL (Extract, Transform, Load) processes.
2. Why use Redshift instead of RDS?
You can choose Redshift over RDS for data warehousing and analytics due to its optimized architecture for handling large-scale analytical queries, columnar storage for efficient data retrieval, and scalability to manage petabyte-scale data volumes.
3. Is Redshift OLTP or OLAP?
Redshift is primarily designed for OLAP (Online Analytical Processing) workloads rather than OLTP (Online Transaction Processing).
4. When not to use Redshift?
You can not use Redshift If real-time data access and low-latency queries are critical, as Redshift’s batch-oriented processing may not meet these requirements compared to in-memory databases or traditional RDBMS optimized for OLTP.
Google BigQuery Architecture: The Comprehensive Guide
Google BigQuery is a fully managed data warehouse tool. It allows scalable analysis over a petabyte of data, querying using ANSI SQL, integration with various applications, etc. To access all these features conveniently, you need to understand BigQuery architecture, maintenance, pricing, and security. This guide decodes the most important components of Google BigQuery: BigQuery Architecture, Maintenance, Performance, Pricing, and Security.
What Is Google BigQuery?
Google BigQuery is a Cloud Datawarehouse run by Google. It is capable of analyzing terabytes of data in seconds. If you know how to write SQL Queries, you already know how to query it. In fact, there are plenty of interesting public data sets shared in BigQuery, ready to be queried by you.
You can access BigQuery by using the GCP console or the classic web UI, by using a command-line tool, or by making calls to BigQuery Rest API using a variety of Client Libraries such as Java, and .Net, or Python.
There are also a variety of third-party tools that you can use to interact with BigQuery, such as visualizing the data or loading the data.
What are the Key Features of Google BigQuery?
Why did Google release BigQuery and why would you use it instead of a more established data warehouse solution?
Ease of Implementation: Building your own is expensive, time-consuming, and difficult to scale. With BigQuery, you need to load data first and pay only for what you use.
Speed: Process billions of rows in seconds and handle the real-time analysis of Streaming data.
What is the Google BigQuery Architecture?
BigQuery Architecture is based on Dremel Technology. Dremel is a tool used in Google for about 10 years.
Dremel: BigQuery Architecture dynamically apportions slots to queries on an as-needed basis, maintaining fairness amongst multiple users who are all querying at once. A single user can get thousands of slots to run their queries. It takes more than just a lot of hardware to make your queries run fast. BigQuery requests are powered by the Dremel query engine.
Colossus: BigQuery Architecture relies on Colossus, Google’s latest generation distributed file system. Each Google data center has its own Colossus cluster, and each Colossus cluster has enough disks to give every BigQuery user thousands of dedicated disks at a time. Colossus also handles replication, recovery (when disks crash), and distributed management.
Jupiter Network: It is the internal data center network that allows BigQuery to separate storage and compute.
Data Model/Storage
Columnar storage.
Nested/Repeated fields.
No Index: Single full table scan.
Query Execution
The query is implemented in Tree Architecture.
The query is executed using tens of thousands of machines over a fast Google Network.
What is the BigQuery’s Columnar Database?
Google BigQuery Architecture uses column-based storage or columnar storage structure that helps it achieve faster query processing with fewer resources. It is the main reason why Google BigQuery handles large datasets quantities and delivers excellent speed.
Row-based storage structure is used in Relational Databases where data is stored in rows because it is an efficient way of storing data for transactional Databases. Storing data in columns is efficient for analytical purposes because it needs a faster data reading speed.
Suppose a Database has 1000 records or 1000 columns of data. If we store data in a row-based structure, then querying only 10 rows out of 1000 will take more time as it will read all the 1000 rows to get 10 rows in the query output.
But this is not the case in Google BigQuery’s Columnar Database, where all the data is stored in columns instead of rows.
The columnar database will process only 100 columns in the interest of the query, which in turn makes the overall query processing faster.
The Google Ecosystem
Google BigQuery is a Cloud Data Warehouse that is a part of Google Cloud Platform (GCP) which means it can easily integrate with other Google products and services.
Google Cloud Platforms is a package of many Google services used to store data such as Google Cloud Storage, Google Bigtable, Google Drive, Databases, and other Data processing tools.
Google BigQuery can process all the data stored in these other Google products. Google BigQuery uses standard SQL queries to create and execute Machine Learning models and integrate with other Business Intelligence tools like Looker and Tableau.
Google BigQuery Comparison with Other Database and Data Warehouses
Here, you will be looking at how Google BigQuery is different from other Databases and Data Warehouses:
1) Comparison with MapReduce and NoSQL
MapReduce vs. Google BigQuery
NoSQL Datastore vs. Google BigQuery
2) Comparison with Redshift and Snowflake
Some Important Considerations about these Comparisons:
If you have a reasonable volume of data, say, dozens of terabytes that you rarely use to perform queries and it’s acceptable for you to have query response times of up to a few minutes when you use, then Google BigQuery is an excellent candidate for your scenario.
If you need to analyze a big amount of data (e.g.: up to a few terabytes) by running many queries which should be answered each very quickly — and you don’t need to keep the data available once the analysis is done, then an on-demand cloud solution like Amazon Redshift is a great fit. But keep in mind that differently from Google BigQuery, Redshift does need to be configured and tuned in order to perform well.
BigQuery Architecture is good enough if not to take into account the speed of data updating. Compared to Redshift, Google BigQuery only supports hourly syncs as its fastest frequency update. This made us choose Redshift, as we needed the solution with the support of close to real-time data integration.
Key Concepts of Google BigQuery
Now, you will get to know about the key concepts associated with Google BigQuery:
1) Working
BigQuery is a data warehouse, implying a degree of centralization. The query we demonstrated in the previous section was applied to a single dataset.
However, the benefits of BigQuery become even more apparent when we do joins of datasets from completely different sources or when we query against data that is stored outside BigQuery.
If you’re a power user of Sheets, you’ll probably appreciate the ability to do more fine-grained research with data in your spreadsheets. It’s a sensible enhancement for Google to make, as it unites BigQuery with more of Google’s own existing services. Previously, Google made it possible to analyse Google Analytics data in BigQuery.
These sorts of integrations could make BigQuery Architecture a better choice in the market for cloud-based data warehouses, which is increasingly how Google has positioned BigQuery. Public cloud market leader Amazon Web Services (AWS) has Redshift, but no widely used tool for spreadsheets.
Microsoft Azure’s SQL Data Warehouse, which has beenin preview for several months, does not currently have an official integration with Microsoft Excel, surprising though it may be.
2) Querying
Google BigQuery Architecture supports SQL queries and supports compatibility with ANSI SQL 2011. BigQuery SQL support has been extended to support nested and repeated field types as part of the data model.
For example, you can use GitHub public dataset and issue the UNNEST command. It lets you iterate over a repeated field.
SELECT
name, count(1) as num_repos
FROM
`bigquery-public-data.github_repos.languages`, UNNEST(language)
GROUP BY name
ORDER BY num_repos
DESC limit 10
A) Interactive Queries
Google BigQuery Architecture supports interactive querying of datasets and provides you with a consolidated view of these datasets across projects that you can access. Features like saving as and shared ad-hoc, exploring tables and schemas, etc. are provided by the console.
B) Automated Queries
You can automate the execution of your queries based on an event and cache the result for later use. You can use Airflow API to orchestrate automated activities.
For simple orchestrations, you can use corn jobs. To encapsulate a query as an App Engine App and run it as a scheduled cron job you can refer to this blog.
C) Query Optimization
Each time a Google BigQuery executes a query, it executes a full-column scan. It doesn’t support indexes. As you know, the performance and query cost of Google BigQuery Architecture is dependent on the amount of data scanned during a query, you need to design your queries to reference the column that is strictly relevant to your query.
When you are using data partitioned tables, make sure that only the relevant partitions are scanned.
You can also refer to the detailed blog here that can help you to understand the performance characteristics after a query executes.
D) External sources
With federated data sources, you can run queries on the data that exists outside of your Google BigQuery. But this method has performance implications. You can also use query federation to perform the ETL process from an external source to Google BigQuery.
E) User-defined functions
Google BigQuery supports user-defined functions for queries that can exceed the complexity of SQL. User-defined functions allow you to extend the built-in SQL functions easily. It is written in JavaScript. It can take a list of values and then return a single value.
F) Query sharing
Collaborators can save and share the queries between the team members. Data exploration exercise, getting desired speed on a new dataset or query pattern becomes a cakewalk with it.
3) ETL/Data Load
There are various approaches to loading data to BigQuery. In case you are moving data from Google Applications – like Google Analytics, Google Adwords, etc. google provides a robust BigQuery Data Transfer Service. This is Google’s own intra-product data migration tool.
Data load from other data sources – databases, cloud applications, and more can be accomplished by deploying engineering resources to write custom scripts.
The broad steps would be to extract data from the data source, transform it into a format that BigQuery accepts, upload this data to Google Cloud Storage (GCS) and finally load this to Google BigQuery from GCS.
A few examples of how to perform this can be found here –> PostgreSQL to BigQuery and SQL Server to BigQuery
A word of caution though – custom coding scripts to move data to Google BigQuery is both a complex and cumbersome process. A third-party data pipeline platform such as LIKE.TG can make this a hassle-free process for you.
Simplify ETL Using LIKE.TG ’s No-code Data Pipeline
LIKE.TG Data helps you directly transfer data from 150+ other data sources (including 40+ free sources) to Business Intelligence tools, Data Warehouses, or a destination of your choice in a completely hassle-free automated manner. LIKE.TG is fully managed and completely automates the process of not only loading data from your desired source but also enriching the data and transforming it into an analysis-ready form without having to write a single line of code. Its fault-tolerant architecture ensures that the data is handled in a secure, consistent manner with zero data loss.
LIKE.TG takes care of all your data preprocessing needs required to set up the integration and lets you focus on key business activities and draw a much more powerful insight on how to generate more leads, retain customers, and take your business to new heights of profitability. It provides a consistent reliable solution to manage data in real-time and always have analysis-ready data in your desired destination.
Get Started with LIKE.TG for Free
4) Pricing Model
A) Google BigQuery Storage Cost
Active – Monthly charge for stored data modified within 90 days.
Long-term – Monthly charge for stored data that have not been modified within 90 days. This is usually lower than the earlier one.
B) Google BigQuery Query Cost
On-demand – Based on data usage.
Flat rate – Fixed monthly cost, ideal for enterprise users.
Free usage is available for the below operations:
Loading data (network pricing policy applicable in case of inter-region).
Copying data.
Exporting data.
Deleting datasets.
Metadata operations.
Deleting tables, views, and partitions.
5) Maintenance
Google has managed to solve a lot of common data warehouse concerns by throwing order of magnitude of hardware at the existing problems and thus eliminating them altogether. Unlike Amazon Redshift, running VACUUM in Google BigQuery is not an option.
Google BigQuery is specifically architected without the need for the resource-intensive VACUUM operation that is recommended for Redshift. BigQuery Pricing is way different compared to the redshift.
Keep in mind that by design, Google BigQuery is append-only. Meaning, that when planning to update or delete data, you’ll need to truncate the entire table and recreate the table with new data.
However, Google has implemented ways in which users can reduce the amount of data processed.
Partition their tables by specifying the partition date in their queries. Use wildcard tables to share their data by an attribute.
6) Security
The fastest hardware and most advanced software are of little use if you can’t trust them with your data. BigQuery’s security model is tightly integrated with the rest of Google’s Cloud Platform, so it is possible to take a holistic view of your data security.
BigQuery uses Google’s Identity and Access Management (IAM) access control system to assign specific permissions to individual users or groups of users.
BigQuery also ties in tightly with Google’s Virtual Private Cloud (VPC) policy controls, which can protect against users who try to access data from outside your organization, or who try to export it to third parties.
Both IAM and VPC controls are designed to work across Google cloud products, so you don’t have to worry that certain products create a security hole.
BigQuery is available in every region where Google Cloud has a presence, enabling you to process the data in the location of your choosing. At the time of writing,
Google Cloud has more than two dozen data centers around the world, and new ones are being opened at a fast rate.
If you have business reasons for keeping data in the US, it is possible to do so. Just create your dataset with the US region code, and all of your queries against the data will be done within that region.
Know more about Google BigQuery security from here.
7) Features
Some features of Google BigQuery Data Warehouse are listed below:
Just upload your data and run SQL.
No cluster deployment, no virtual machines, no setting keys or indexes, and no software.
Separate storage and computing.
No need to deploy multiple clusters and duplicate data into each one. Manage permissions on projects and datasets with access control lists. Seamlessly scales with usage.
Compute scales with usage, without cluster resizing.
Thousands of cores are used per query.
Deployed across multiple data centers by default, with multiple factors of replication to optimize maximum data durability and service uptime.
Stream millions of rows per second for real-time analysis.
Analyze terabytes of data in seconds.
Storage scales to Petabytes.
8) Interaction
A) Web User Interface
Run queries and examine results.
Manage databases and tables.
Save queries and share them across the organization for re-use.
Detailed Query history.
B) Visualize Data Studio
View BigQuery results with charts, pivots, and dashboards.
C) API
A programmatic way to access Google BigQuery.
D) Service Limits for Google BigQuery
The concurrent rate limit for on-demand, interactive queries: 50.
Daily query size limit: Unlimited by default.
Daily destination table update limit: 1,000 updates per table per day.
Query execution time limit: 6 hours.
A maximum number of tables referenced per query: 1,000.
Maximum unresolved query length: 256 KB.
Maximum resolved query length: 12 MB.
The concurrent rate limit for on-demand, interactive queries against Cloud Big table external data sources: 4.
E) Integrating with Tensorflow
BigQuery has a new feature BigQuery ML that let you create and use a simple Machine Learning (ML) model as well as deep learning prediction with the TensorFlow model. This is the key technology to integrate the scalable data warehouse with the power of ML.
The solution enables a variety of smart data analytics, such as logistic regression on a large dataset, similarity search, and recommendation on images, documents, products, or users, by processing feature vectors of the contents. Or you can even run TensorFlow model prediction inside BigQuery.
Now, imagine what would happen if you could use BigQuery for deep learning as well. After having data scientists train the cutting-edge intelligent neural network model with TensorFlow or Google Cloud Machine Learning, you can move the model to BigQuery and execute predictions with the model inside BigQuery.
This means you can let any employee in your company use the power of BigQuery for their daily data analytics tasks, including image analytics and business data analytics on terabytes of data, processed in tens of seconds, solely on BigQuery without any engineering knowledge.
9) Performance
Google BigQuery rose from Dremel, Google’s distributed query engine. Dremel held the capability to handle terabytes of data in seconds flat by leveraging distributed computing within a serverless BigQuery Architecture.
This BigQuery architecture allows it to process complex queries with the help of multiple servers in parallel to significantly improve processing speed. In the following sections, you will take a look at the 4 critical components of Google BigQuery performance:
Tree Architecture
Serverless Service
SQL and Programming Language Support
Real-time Analytics
Tree Architecture
BigQuery Architecture and Dremel can scale to thousands of machines by structuring computations as an execution tree. A root server receives an incoming query and relays it to branches, also known as mixers, which modify incoming queries and deliver them to leaf nodes, also known as slots.
Working in parallel, the leaf nodes handle the nitty-gritty of filtering and reading the data. The results are then moved back down the tree where the mixers accumulate the results and send them to the root as the answer to the query.
Serverless Service
In most Data Warehouse environments, organizations have to specify and commit to the server hardware on which computations are run. Administrators have to provision for performance, elasticity, security, and reliability.
A serverless model can come in handy in solving this constraint. In a serverless model, processing can automatically be distributed over a large number of machines working simultaneously.
By leveraging Google BigQuery’s serverless model, database administrators and data engineers can focus less on infrastructure and more on provisioning servers and extracting actionable insights from data.
SQL and Programming Language Support
Users can avail BigQuery Architecture through standard-SQL, which many users are quite familiar with. Google BigQuery also has client libraries for writing applications that can access data in Python, Java, Go, C#, PHP, Ruby, and Node.js.
Real-time Analytics
Google BigQuery can also run and process reports on real-time data by using other GCP resources and services. Data Warehouses can provide support for analytics after data from multiple sources is accumulated and stored- which can often happen in batches throughout the day.
Apart from Batch Processing, Google BigQuery Architecture also supports streaming at a rate of millions of rows of data every second.
10) Use Cases
You can use Google BigQuery Data Warehouse in the following cases:
Use it when you have queries that run more than five seconds in a relational database. The idea of BigQuery is running complex analytical queries, which means there is no point in running queries that are doing simple aggregation or filtering. BigQuery is suitable for “heavy” queries, those that operate using a big set of data. The bigger the dataset, the more you’re likely to gain performance by using BigQuery. The dataset that I used was only 330 MB (megabytes, not even gigabytes).
BigQuery is good for scenarios where data does not change often and you want to use the cache, as it has a built-in cache. What does this mean? If you run the same query and the data in tables are not changed (updated), BigQuery will just use cached results and will not try to execute the query again. Also, BigQuery is not charging money for cached queries.
You can also use BigQuery when you want to reduce the load on your relational database. Analytical queries are “heavy” and overusing them under a relational database can lead to performance issues. So, you could eventually be forced to think about scaling your server. However, with BigQuery you can move these running queries to a third-party service, so they would not affect your main relational database.
Conclusion
BigQuery is a sophisticated mature service that has been around for many years. It is feature-rich, economical, and fast. BigQuery integration with Google Drive and the free Data Studio visualization toolset is very useful for comprehension and analysis of Big Data and can process several terabytes of data within a few seconds. This service needs to deploy across existing and future Google Cloud Platform (GCP) regions. Serverless is certainly the next best option to obtain maximized query performance with minimal infrastructure cost.
If you want to integrate your data from various sources and load it in Google BigQuery, then try LIKE.TG .
Visit our Website to Explore LIKE.TG
Businesses can use automated platforms like LIKE.TG Data to set the integration and handle the ETL process. It helps you directly transfer data from various Data Sources to a Data Warehouse, Business Intelligence tools, or any other desired destination in a fully automated and secure manner without having to write any code and will provide you with a hassle-free experience.
Want to take LIKE.TG for a spin? Sign Up for a 14-day free trial and experience the feature-rich LIKE.TG suite first hand. You can also have a look at the unbeatable pricing that will help you choose the right plan for your business needs.
So, what are your thoughts on Google BigQuery? Let us know in the comments
Amazon S3 to Snowflake ETL: 2 Easy Methods
Does your organization have data integration requirements, like migrating data from Amazon S3 to Snowflake? You might have found your way to the right place. This article talks about a specific Data Engineering scenario where data gets moved from the popular Amazon S3 to Snowflake, a well-known cloud Data Warehousing Software. However, before we dive deeper into understanding the steps, let us first understand these individual systems for more depth and clarity.Prerequisites
You will have a much easier time understanding the ways for setting up the Amazon S3 to Snowflake Integration if you have gone through the following aspects:
An active account on Amazon Web Services.An active account on Snowflake.Working knowledge of Databases and Data Warehouses.Clear idea regarding the type of data to be transferred.
How to Set Up Amazon S3 to Snowflake Integration
This article delves into both the manual and using LIKE.TG methods in depth. You will also see some of the pros and cons of these approaches and would be able to pick the best method based on your use case.
Let us now go through the two methods:
Method 1: Manual ETL Process to Set up Amazon S3 to Snowflake Integration
You can follow the below-mentioned steps to manually set up Amazon S3 to Snowflake Integration:
Step 1: Configuring an S3 Bucket for AccessStep 2: Data PreparationStep 3: Copying Data from S3 Buckets to the Appropriate Snowflake TablesStep 4: Set up automatic data loading using SnowpipeStep 5: Manage data transformations during the data load from S3 to Snowflake
Step 1: Configuring an S3 Bucket for Access
To authenticate access control to an S3 bucket during a data load/unload operation, Amazon Web Services provides an option to create Identity Access Management (IAM) users with the necessary permissions.
An IAM user creation is a one-time process that creates a set of credentials enabling a user to access the S3 bucket(s).
In case there are a larger number of users, another option is to create an IAM role and assign this role to a set of users. The IAM role will be created with the necessary access permissions to an S3 bucket, and any user having this role can run data load/unload operations without providing any set of credentials.
Step 2: Data Preparation
There are a couple of things to be kept in mind in terms of preparing the data. They are:
Compression: Compression of files stored in the S3 bucket is highly recommended, especially for bigger data sets, to help with the smooth and faster transfer of data. Any of the following compression methods can be used:gzipbzip2brotlizstandarddeflateraw deflateFile Format: Ensure the file format of the data files to be loaded matches with the file format from the table below –
Step 3: Copying Data from S3 Buckets to the Appropriate Snowflake Tables
Data copy from S3 is done using a ‘COPY INTO’ command that looks similar to a copy command used in a command prompt or any scripting language. It has a ‘source’, a ‘destination’, and a set of parameters to further define the specific copy operation.
The two common ways to copy data from S3 to Snowflake are using the file format option and the pattern matching option: File format -Here’s an example :
copy into abc_table
from s3://snowflakebucket/data/abc_files
credentials=(aws_key_id='$KEY_ID' aws_secret_key='$SECRET_KEY') file_format = (type = csv field_delimiter = ',');
Pattern Matching –
copy into abc_table
from s3://snowflakebucket/data/abc_files
credentials=(aws_key_id='$KEY_ID' aws_secret_key='$SECRET_KEY') pattern='*test*.csv';
Step 4: Set up Automatic Data Loadingusing Snowpipe
As running COPY commands every time a data set needs to be loaded into a table is infeasible, Snowflake provides an option to automatically detect and ingest staged files when they become available in the S3 buckets. This feature is called automatic data loading using Snowpipe.
Here are the main features of a Snowpipe –
Snowpipe can be set up in a few different ways to look for newly staged files and load them based on a pre-defined COPY command. An example here is to create a Simple-Queue-Service notification that can trigger the Snowpipe data load.In the case of multiple files, Snowpipe appends these files into a loading queue. Generally, the older files are loaded first, however, this is not guaranteed to happen.Snowpipe keeps a log of all the S3 files that have already been loaded – this helps it identify a duplicate data load and ignore such a load when it is attempted.
Step 5: Managing Data Transformations During the Data Load from S3 to Snowflake
One of the cool features available on Snowflake is its ability to transform the data during the data load. In traditional ETL, data is extracted from one source and loaded into a stage table in a one-to-one fashion. Later on, transformations are done during the data load process between the stage and the destination table. However, with Snowflake, the intermediate stage table can be ignored, and the following data transformations can be performed during the data load –
Reordering of columns: The order of columns in the data file doesn’t need to match the order of the columns in the destination table.Column omissions: The data file can have fewer columns than the destination table, and the data load will still go through successfully.Circumvent column length discrepancy: Snowflake provides for options to truncate the string length of data sets in the data file to align with the field lengths in the destination table. The above transformations are done through the use of select statements while performing the COPY command. These select statements are similar to how select SQL queries are written to query database tables, the only difference here is, the select statements pull certain data from a staged data file (instead of a database table) in an S3 bucket. Here is an example of a COPY command using a select statement to reorder the columns of a data file before going ahead with the actual data load –
copy into abc_table(ID, name, category, price)
from (select x.$1, x.$3, x.$4, x.$2 from @s3snowflakestage x) file_format = (format_name = csvtest);
In the above example, the order of columns in the data file is different from that of the abc_table, hence, the select statement calls out specific columns using the $*number* syntax to match with the order of the abc_table.
Limitations of Manual ETL Process to Set up Amazon S3 to Snowflake Integration
After reading this blog, it may appear as if writing custom ETL scripts to achieve the above steps to move data from S3 to Snowflake is not that complicated. However, in reality, there is a lot that goes into building these tiny things in a coherent, robust way to ensure that your data pipelines are going to function reliably and efficiently. Some specific challenges to that end are –
Other than one-of-use of the COPY command for specific, ad-hoc tasks, as far as data engineering and ETL goes, this whole chain of events will have to be automated so that real-time data is available as soon as possible for analysis. Setting up Snowpipe or any similar solution to achieve that reliably is no trivial task.On top of setting up and automating these tasks, the next thing a growing data infrastructure is going to face is scaling. Depending on the growth, things can scale up really quickly and if you don’t have a dependable, data engineering backbone that can handle this scale, it can become a problem.With functionalities to perform data transformations, a lot can be done in the data load phase, however, again with scale, there are going to be so many data files and so many database tables, at which point, you’ll need to have a solution already deployed that can keep track of these updates and stay on top of it.
Method 2: Using LIKE.TG Data to Set up Amazon S3 to Snowflake Integration
LIKE.TG Data, a No-code Data Pipeline, helps you directly transfer data from Amazon S3 and150+ other data sourcesto Data Warehouses such as Snowflake, Databases, BI tools, or a destination of your choice in a completely hassle-free automated manner.
LIKE.TG is fully managed and completely automates the process of not only loading data from your desired source but also enriching the data and transforming it into an analysis-ready form without having to write a single line of code. Its fault-tolerant architecture ensures that the data is handled in a secure, consistent manner with zero data loss.
LIKE.TG Data takes care of all your data preprocessing needs and lets you focus on key business activities and draw a much more powerful insight on how to generate more leads, retain customers, and take your business to new heights of profitability. It provides a consistent reliable solution to manage data in real-time and always has analysis-ready data in your desired destination.
Loading data into Snowflake using LIKE.TG is easier, more reliable, and fast. LIKE.TG is a no-code automated data pipeline platform that solves all the challenges described above.
For any information on Amazon S3 Logs, you can visit the former link.
Sign up here for a 14-Day Free Trial!
You can move data from Amazon S3 to Snowflake by following 3 simple steps without writing any piece of code.
Connect to Amazon S3 source by providing connection settings.
Select the file format (JSON/CSV/AVRO) and create schema folders.Configure Snowflake Warehouse.
LIKE.TG will take all groundwork of moving data from Amazon S3 to Snowflake in a Secure, Consistent, and Reliable fashion.
Here are more reasons to try LIKE.TG :
Secure: LIKE.TG has a fault-tolerant architecture that ensures that the data is handled in a secure, consistent manner with zero data loss.Schema Management: LIKE.TG takes away the tedious task of schema management automatically detects the schema of incoming data and maps it to the destination schema.Minimal Learning: LIKE.TG , with its simple and interactive UI, is extremely simple for new customers to work on and perform operations.LIKE.TG Is Built To Scale: As the number of sources and the volume of your data grows, LIKE.TG scales horizontally, handling millions of records per minute with very little latency.Incremental Data Load: LIKE.TG allows the transfer of data that has been modified in real-time. This ensures efficient utilization of bandwidth on both ends.Live Support: The LIKE.TG team is available round the clock to extend exceptional support to its customers through chat, email, and support calls.Live Monitoring: LIKE.TG allows you to monitor the data flow and check where your data is at a particular point in time.
Download the Cheatsheet on How to Set Up ETL to Snowflake
Learn the best practices and considerations for setting up high-performance ETL to Snowflake
Conclusion
Amazon S3 to Snowflake is a very common data engineering use case in the tech industry. As mentioned in the custom ETL method section, you can set things up on your own by following a sequence of steps, however, as mentioned in the challenges section, things can get quite complicated and a good number of resources may need to be allocated to these tasks to ensure consistent, day-to-day operations.
Visit our Website to Explore LIKE.TG
Businesses can use automated platforms likeLIKE.TG Data to set this integration and handle the ETL process. It helps you directly transfer data from a source of your choice to a Data Warehouse, Business Intelligence tools, or any other desired destination in a fully automated and secure manner without having to write any code and will provide you a hassle-free experience.
Want to try LIKE.TG ?
Sign Up for a 14-day free trialand experience the feature-rich LIKE.TG suite first hand. Have a look at our unbeatablepricing, which will help you choose the right plan for you.
Share your experience of setting up Amazon S3 to Snowflake Integration in the comments section below!
Redshift Sort Keys: 3 Comprehensive Aspects
Amazon Redshift is a fully managed, distributed Relational Data Warehouse system. It is capable of performing queries efficiently over petabytes of data. Nowadays, Redshift has become a natural choice for many for their Data Warehousing needs. This makes it important to understand the concept of Redshift Sortkeys to derive optimum performance from it. This article will introduce Amazon Redshift Data Warehouse and the Redshift Sortkeys. It will also shed light on the types of Sort Keys available and their implementation in Data Warehousing. If leveraged rightly, Sort Keys can help optimize the query performance on an Amazon Redshift Cluster to a greater extent. Read along to understand the importance of Sort Keys and the points that you must keep in mind while selecting a type of Sort Key for your Data Warehouse!
What is Redshift Sortkey?
Amazon Redshift is a well-known Cloud-based Data Warehouse. Developed by Amazon, Redshift has the ability to quickly scale and deliver services to users, reducing costs and simplifying operations. Moreover, it links well with other AWS services, for example, AWS Redshift analyzes all data present in data warehouses and data lakes efficiently.
With machine learning, massively parallel query execution, and high-performance disk columnar storage, Redshift delivers much better speed and performance than its peers. AWS Redshift is easy to operate and scale, so users don’t need to learn any new languages. By simply loading the cluster and using your favorite tools, you can start working on Redshift. The following video tutorial will help you in starting your journey with AWS Redshift.
To learn more about Amazon Redshift, visit here.
Introduction to Redshift Sortkeys
Redshift Sortkeys determines the order in which rows in a table are stored. Query performance is improved when Redshift Sortkeys are properly used as it enables the query optimizer to read fewer chunks of data filtering out the majority of it.
During the process of storing your data, some metadata is also generated, for example, the minimum and maximum values of each block are saved and can be accessed directly without repeating the data. Every time a query is executed. This metadata is passed to the query planner, which extracts this information to create more efficient execution plans. This metadata is used by the Sort Keys to optimizing the query processing.
Redshift Sortkeys allow skipping large chunks of data during query processing. Fewer data to scan means a shorter processing time, thereby improving the query’s performance.
To learn more about Redshift Sortkeys, visit here.
Simplify your ETL Processes with LIKE.TG ’s No-code Data Pipeline
LIKE.TG Data, a No-code Data Pipeline helps to load data from any data source such as Databases, SaaS applications, Cloud Storage, SDK,s, and Streaming Services and simplifies the ETL process. It supports100+ data sourcesand loads the data onto the desired Data Warehouse-likeRedshift, enriches the data, and transforms it into an analysis-ready form without writing a single line of code.
Its completely automated pipeline offers data to be delivered in real-time without any loss from source to destination. Its fault-tolerant and scalable architecture ensure that the data is handled in a secure, consistent manner with zero data loss and supports different forms of data. The solutions provided are consistent and work with different Business Intelligence (BI) tools as well.
Get Started with LIKE.TG for Free
Check out why LIKE.TG is the Best:
Secure: LIKE.TG has a fault-tolerant architecture that ensures that the data is handled in a secure, consistent manner with zero data loss.
Schema Management: LIKE.TG takes away the tedious task of schema management automatically detects the schema of incoming data and maps it to the destination schema.
Minimal Learning: LIKE.TG , with its simple and interactive UI, is extremely simple for new customers to work on and perform operations.
LIKE.TG Is Built To Scale: As the number of sources and the volume of your data grows, LIKE.TG scales horizontally, handling millions of records per minute with very little latency.
Incremental Data Load: LIKE.TG allows the transfer of data that has been modified in real-time. This ensures efficient utilization of bandwidth on both ends.
Live Support: The LIKE.TG team is available round the clock to extend exceptional support to its customers through chat, email, and support calls.
Live Monitoring: LIKE.TG allows you to monitor the data flow and check where your data is at a particular point in time.
Sign up here for a 14-Day Free Trial!
Types of Redshift Sortkeys
There can be multiple columns defined as Sort Keys. Data stored in the table can be sorted using these columns. The query optimizer uses this sort of ordered table while determining optimal query plans. There are 2 types of Amazon Redshift Sortkey available:
Compound Redshift Sortkeys
Interleaved Redshift Sortkeys
1) Compound Redshift Sortkeys
These are made up of all the columns that are listed in the Redshift Sortkeys definition during the creation of the table, in the order that they are listed. Therefore, it is advisable to put the most frequently used column at the first in the list. COMPOUND is the default Sort type. The Compound Redshift Sortkeys might speed up joins, GROUP BY and ORDER BY operations, and window functions that use PARTITION BY.
Download the Cheatsheet on How to Set Up High-performance ETL to Redshift
Learn the best practices and considerations for setting up high-performance ETL to Redshift
For example, let’s create a table with 2 Compound Redshift sortkeys.
CREATE TABLE customer ( c_customer_id INTEGER NOT NULL, c_country_id INTEGER NOT NULL, c_name VARCHAR(100) NOT NULL)
COMPOUND SORTKEY(c_customer_id, c_country_id);
You can see how data is stored in the table, it is sorted by the columns c_customer_id and c_country_id. Since the column c_customer_id is first in the list, the table is first sorted by c_customer_id and then by c_country_id.
As you can see in Figure.1, if you want to get all country IDs for a customer, you would require access to one block. If you need to get IDs for all customers with a specific country, you need to access all four blocks. This shows that we are unable to optimize two kinds of queries at the same time using Compound Sorting.
2) Interleaved Redshift Sortkeys
Interleaved Sort gives equal weight to each column in the Redshift Sortkeys. As a result, it can significantly improve query performance where the query uses restrictive predicates (equality operator in WHERE clause) on secondary sort columns.
Adding rows to a Sorted Table already containing data affects the performance significantly. VACUUM and ANALYZE operations should be used regularly to re-sort and update the statistical metadata for the query planner. The effect is greater when the table uses interleaved sorting, especially when the sort columns include data that increases monotonically, such as date or timestamp columns.
For example, let’s create a table with Interleaved Sort Keys.
CREATE TABLE customer (c_customer_id INTEGER NOT NULL, c_country_id INTEGER NOT NULL) INTERLEAVED
SORTKEY (c_customer_id, c_country_id);
As you can see, the first block stores the first two customer IDs along with the first two country IDs. Therefore, you only scan 2 blocks to return data to a given customer or a given country.
The query performance is much better for the large table using interleave sorting. If the table contains 1M blocks (1 TB per column) with an interleaved sort key of both customer ID and country ID, you scan 1K blocks when you filter on a specific customer or country, a speedup of 1000x compared to the unsorted case.
Choosing the Ideal Redshift Sortkey
Both Redshift Sorkeys have their own use and advantages. Keep the following points in mind for selecting the right Sort Key:
Use Interleaved Sort Keyswhen you plan to use one column as Sort Key or when WHERE clauses in your query have highly selective restrictive predicates. Or if the tables are huge. You may want to check table statistics by querying the STV_BLOCKLIST system table. Look for the tables with a high number of 1MB blocks per slice and distributed over all slices.
Use Compound Sort Keys when you have more than one column as Sort Key, when your query includes JOINS, GROUP BY, ORDER BY, and PARTITION BY when your table size is small.
Don’t use an Interleaved Sort Key on columns with monotonically increasing attributes, like an identity column, dates, or timestamps.
This is how you can choose the ideal Sort Key in Redshift for your unique data needs.
Conclusion
This article introduced Amazon Redshift Data Warehouse and the Redshift Sortkeys. Moreover, it provided a detailed explanation of the 2 types of Redshift Sortkeys namely, Compound Sort Keys and Interleaved Sort Keys. The article also listed down the points that you must remember while choosing Sort Keys for your Redshift Data warehouse.
Visit our Website to Explore LIKE.TG
Another way to get optimum Query performance from Redshift is to re-structure the data from OLTP to OLAP. You can create derived tables by pre-aggregating and joining the data. Data Integration Platform such as LIKE.TG Data offers Data Modelling and Workflow Capability to achieve this simply and reliably. LIKE.TG Data offers a faster way to move data from150+ data sourcessuch as SaaS applications or Databases into your Redshift Data Warehouse to be visualized in a BI tool.LIKE.TG is fully automated and hence does not require you to code.
Want to take LIKE.TG for a spin? Sign Up for a 14-day free trial and experience the feature-rich LIKE.TG suite first hand
Share your experience of using different Redshift Sortkeys in the comments below!