基于词典的社交媒体内容的情感分析(Python实现)

LIKE.TG 成立于2020年,总部位于马来西亚,是首家汇集全球互联网产品,提供一站式软件产品解决方案的综合性品牌。唯一官方网站:www.like.tg
之前写了一篇基于NLTK情感预测的文章https://www.omegaxyz.com/2017/12/15/nltk_emotion/?hilite=%27NLTK%27b
情感词典是从微博、新闻、论坛等数据来源的上百万篇情感标注数据当中自动构建的情感极性词典。因为标注包括微博数据,该词典囊括了很多网络用语及非正式简称,对非规范文本也有较高的覆盖率。该情感词典可以用于构建社交媒体情感分析引擎,负面内容发现等应用。
这是一个基于机器学习的已生成的情感词典(txt文档),注意只能预测社交媒体等非规范性文本(文章情感预测精度有误差)
词典下载:https://bosonnlp.com/resources/BosonNLP_sentiment_score.zip
python实现是利用jieba分词预测
Python
测试文本来自陈奕迅《爱情转移》中“才拒绝做爱情代罪的羔羊”
结果:
-0.730524151526 轻微的难受或者不屑,想得太多啦,洗洗睡觉吧
网站所有原创代码采用Apache 2.0授权 网站文章采用知识共享许可协议BY-NC-SA4.0授权

现在关注【LIKE.TG出海指南频道】、【LIKE.TG大客户服务频道】,即可免费领取【WhatsApp、LINE、Telegram、Twitter、ZALO云控】等获客工具试用、【住宅IP、号段筛选】等免费资源,机会难得,快来解锁更多资源,助力您的业务飞速成长!点击【联系客服】
本文由LIKE.TG编辑部转载自互联网并编辑,如有侵权影响,请联系官方客服,将为您妥善处理。
This article is republished from public internet and edited by the LIKE.TG editorial department. If there is any infringement, please contact our official customer service for proper handling.
Server deployment全球论坛人工智能论坛全球峰会发展论坛战略论坛开放论坛程序员论坛互联网峰会科技峰会