复杂网络 | 社交媒体话题和人物共现

LIKE.TG 成立于2020年,总部位于马来西亚,是首家汇集全球互联网产品,提供一站式软件产品解决方案的综合性品牌。唯一官方网站:www.like.tg
无论是国内的微博,还是国外的推特,其帖子中不乏带有 #keyword# 这样的 hashtag 和 @somebody 这样的 user 的格式内容,将每一条帖子中同时出现的 hashtag 或 user 视为一次链接,构建 hashtag 之间和 user 之间的关系矩阵,然后导入 Gephi 软件进行复杂网络分析,是非常普遍的研究手段,本文将介绍如何自动化这一过程,已部署至网页:
以 当人们在讨论 ChatGPT 时,都在讨论什么 中共享的 ChatGPT.csv 数据集为例,只需要在上面的网页中上传这个 csv 文件,就能实时生成 这个 ChatGPT 帖子讨论中的 hashtag 话题和 user 人物共现可视化矩阵,结果文件为 Gephi 所需的 nodes.csv 和 edges.csv 和前 Top-N 权重连边的 NxN 矩阵 csv,以及网络可视化图 html 文件。
nodes.csv、edges.csv 和 top_N_matrix.csv
echarts 实现的网络可视化
以及顺带的一些基本的复杂网络分析:度分布、度度相关性、核度分布和集聚系数等基本统计特征
类似地,同时生成的 user 人物共现可视化结果如下:
Top-N 矩阵可以自定义 N 的大小。
总的来说,上传一个包含 content 列的社交媒体帖子的 csv 文件,就能同时生成人物和话题共现网络,人物和话题各 3 个 csv 文件和 1 个 html 文件,共 8 个文件,构建结束即时下载压缩后的结果 zip 文件。
地址:

现在关注【LIKE.TG出海指南频道】、【LIKE.TG大客户服务频道】,即可免费领取【WhatsApp、LINE、Telegram、Twitter、ZALO云控】等获客工具试用、【住宅IP、号段筛选】等免费资源,机会难得,快来解锁更多资源,助力您的业务飞速成长!点击【联系客服】
本文由LIKE.TG编辑部转载自互联网并编辑,如有侵权影响,请联系官方客服,将为您妥善处理。
This article is republished from public internet and edited by the LIKE.TG editorial department. If there is any infringement, please contact our official customer service for proper handling.
Server deployment全球论坛人工智能论坛全球峰会发展论坛战略论坛开放论坛程序员论坛互联网峰会科技峰会